16S_Caulosphere_Microbiome2017_FA19
R Packages
The following code uses several packages including vegan for community ecology, tidyr and ply for organizing data tables and manipulating strings of text, and ggplot for plotting data.
#In this chunk I load all of the requisite packages.
library(vegan)
library(ggplot2)
library(ggpubr)
library(tidyr)
library(plyr)
library(data.table)
library(RColorBrewer)
library(ape)
library(car)
library(Hmisc)
library(plotly)
## Warning: package 'plotly' was built under R version 3.6.2
Project Summary
The following code is used to analyze 16S data from drill shaving samples collected from phloem tissues of 47 Juglans nigra trees. Raw reads were generated on the Illumina Miseq platform (2x250) and processed into OTUs using the bioinformatics pipeline Mothur. Following sequence processing in Mothur, a total of 4,530 OTUs were generated from 18,922 unique sequences (333,951 sequences total from 5,628,726 reads prior to processing).Taxonomic assignments were made in Mothur using the SILVA database. OTUs were generated in MOTHUR using a 97% similarity threshold for sequences aligned to the V4 region of the 16S rRNA region.
Data Import
Below raw OTU tables (data has not yet been rarefied), metadata which indicates the state from which the sample was collected and clone ID, and the taxonomic classifications for each OTU are imported into R.
#First I import the whole OTU table I recieved from Mothur. Note at this point taxonomy is not included, it is just raw OTU counts (columns) by sample or group (rows). Below I indicate that the row.names are in column 2 of the imported file.
bigfile.sample.ds<-read.table("Mothur_output/bark16sotutable_jnigra17_fa19_ajo.shared",header=TRUE,sep="\t",fill=TRUE,strip.white=TRUE, row.names=2)
#Next I import the metadata for the particular habitat of interest. In this case I am working with drill shavings. I will use this metadata to subset the larger OTU file above.
ds.met<-read.table("Mothur_output/bark16smetadata_jnigra17_su19_ajo.txt",header=TRUE,sep="\t",fill=TRUE,strip.white=TRUE)
#Next I import the taxonomy file. In earlier versions of this code, this contained taxonomic assignments for the whole dataset and not just a single habitat. Current version is only 16S drill shaving data.
taxonomy.ds<-read.table("Mothur_output/bark16staxonomy_jnigra17_fa19_ajo.cons.taxonomy",header=TRUE,sep="\t",fill=TRUE,strip.white=TRUE,row.names=1)
#I then create a new object that contains the group names from the metadata file.
ds.names<-ds.met$Group
Data Subsetting
Below I subset the OTU table to remove mothur inserted metadata which indicates the percent identity threshold and the number of OTUs.
#Here I use the subset function to pull out just the samples belonging to drill shavings.
ds<-subset(bigfile.sample.ds, rownames(bigfile.sample.ds) %in% ds.names)
#Here I am removing any OTU that is not present in any samples. What the below function is doing is summing the columns (OTUs) and any OTU that equals 0 is removed from the dataset. This will hopefully speed up downstream analyses. This function becomes more important when you have an OTU table from multiple habitats and are only interested in one habitat.
ds.pure<- ds[,colSums(ds)>0]
#Here I am further subsetting the data. I am removing some MOTHUR metadata that is particularly meaningful to downstream analyses (i.e. percent identity cut-off and number of OTUs).
ds.pureotu<-ds.pure[,3:4530]
Rarefaction and Singleton Removal
To evaluate coverage and differences in sequencing depth between samples, I generate rarefaction curves with sequencing depth on the x-axis and number of OTUs on the y-axis. These curves can be used to evaluate where to set the rarefaction cut-off to reduce sampling biases when calculating alpha-diversity measures such as diversity and observed richness. Additionally, to reduce the effects of rare taxa on ordinations, I remove singletons here as well. ## Rarefaction Curves Below I generate the rarefaction curves using the rarecurve function from vegan. This will take sometime to run, particularly on larger OTU tables. The output is then subset so that individual samples can be plotted in ggplot.
#Below I create the rarefaction curves for each sample using the rarecurve function from vegan.
library(vegan)
rarebacdscurve<-rarecurve(ds.pureotu)
#I then create an object that spans the range of the OTU richness. This will be used to plot the vertical line in my ggplot rarefaction curve.
f<-(0:2000)
#I then create objects containing the x and y coordinates values for each sample. This is probably not the most elegant way of creating rarefaction curves in ggplot, but I don't know a better way at the moment.
sequenceds47<-attr(rarebacdscurve[[47]],which="Subsample")
sequenceds46<-attr(rarebacdscurve[[46]],which="Subsample")
sequenceds45<-attr(rarebacdscurve[[45]],which="Subsample")
sequenceds44<-attr(rarebacdscurve[[44]],which="Subsample")
sequenceds43<-attr(rarebacdscurve[[43]],which="Subsample")
sequenceds42<-attr(rarebacdscurve[[42]],which="Subsample")
sequenceds41<-attr(rarebacdscurve[[41]],which="Subsample")
sequenceds40<-attr(rarebacdscurve[[40]],which="Subsample")
sequenceds39<-attr(rarebacdscurve[[39]],which="Subsample")
sequenceds38<-attr(rarebacdscurve[[38]],which="Subsample")
sequenceds37<-attr(rarebacdscurve[[37]],which="Subsample")
sequenceds36<-attr(rarebacdscurve[[36]],which="Subsample")
sequenceds35<-attr(rarebacdscurve[[35]],which="Subsample")
sequenceds34<-attr(rarebacdscurve[[34]],which="Subsample")
sequenceds33<-attr(rarebacdscurve[[33]],which="Subsample")
sequenceds32<-attr(rarebacdscurve[[32]],which="Subsample")
sequenceds31<-attr(rarebacdscurve[[31]],which="Subsample")
sequenceds30<-attr(rarebacdscurve[[30]],which="Subsample")
sequenceds29<-attr(rarebacdscurve[[29]],which="Subsample")
sequenceds28<-attr(rarebacdscurve[[28]],which="Subsample")
sequenceds27<-attr(rarebacdscurve[[27]],which="Subsample")
sequenceds26<-attr(rarebacdscurve[[26]],which="Subsample")
sequenceds25<-attr(rarebacdscurve[[25]],which="Subsample")
sequenceds24<-attr(rarebacdscurve[[24]],which="Subsample")
sequenceds23<-attr(rarebacdscurve[[23]],which="Subsample")
sequenceds22<-attr(rarebacdscurve[[22]],which="Subsample")
sequenceds21<-attr(rarebacdscurve[[21]],which="Subsample")
sequenceds20<-attr(rarebacdscurve[[20]],which="Subsample")
sequenceds19<-attr(rarebacdscurve[[19]],which="Subsample")
sequenceds18<-attr(rarebacdscurve[[18]],which="Subsample")
sequenceds17<-attr(rarebacdscurve[[17]],which="Subsample")
sequenceds16<-attr(rarebacdscurve[[16]],which="Subsample")
sequenceds15<-attr(rarebacdscurve[[15]],which="Subsample")
sequenceds14<-attr(rarebacdscurve[[14]],which="Subsample")
sequenceds13<-attr(rarebacdscurve[[13]],which="Subsample")
sequenceds12<-attr(rarebacdscurve[[12]],which="Subsample")
sequenceds11<-attr(rarebacdscurve[[11]],which="Subsample")
sequenceds10<-attr(rarebacdscurve[[10]],which="Subsample")
sequenceds9<-attr(rarebacdscurve[[9]],which="Subsample")
sequenceds8<-attr(rarebacdscurve[[8]],which="Subsample")
sequenceds7<-attr(rarebacdscurve[[7]],which="Subsample")
sequenceds6<-attr(rarebacdscurve[[6]],which="Subsample")
sequenceds5<-attr(rarebacdscurve[[5]],which="Subsample")
sequenceds4<-attr(rarebacdscurve[[4]],which="Subsample")
sequenceds3<-attr(rarebacdscurve[[3]],which="Subsample")
sequenceds2<-attr(rarebacdscurve[[2]],which="Subsample")
sequenceds1<-attr(rarebacdscurve[[1]],which="Subsample")
#Here I plot the rarefaction curves using ggplot.
library(ggplot2)
library(ggpubr)
dsrarecurv<-ggplot()+
geom_line(aes(x=sequenceds47,y=rarebacdscurve[[47]]), size=1)+
geom_line(aes(x=sequenceds46,y=rarebacdscurve[[46]]),size=1)+
geom_line(aes(x=sequenceds45,y=rarebacdscurve[[45]]),size=1 )+
geom_line(aes(x=sequenceds44,y=rarebacdscurve[[44]]),size=1)+
geom_line(aes(x=sequenceds43,y=rarebacdscurve[[43]]),size=1)+
geom_line(aes(x=sequenceds42,y=rarebacdscurve[[42]]),size=1)+
geom_line(aes(x=sequenceds41,y=rarebacdscurve[[41]]),size=1)+
geom_line(aes(x=sequenceds40,y=rarebacdscurve[[40]]),size=1)+
geom_line(aes(x=sequenceds39,y=rarebacdscurve[[39]]), size=1)+
geom_line(aes(x=sequenceds38,y=rarebacdscurve[[38]]), size=1)+
geom_line(aes(x=sequenceds37,y=rarebacdscurve[[37]]), size=1)+
geom_line(aes(x=sequenceds36,y=rarebacdscurve[[36]]),size=1)+
geom_line(aes(x=sequenceds35,y=rarebacdscurve[[35]]),size=1 )+
geom_line(aes(x=sequenceds34,y=rarebacdscurve[[34]]),size=1)+
geom_line(aes(x=sequenceds33,y=rarebacdscurve[[33]]),size=1)+
geom_line(aes(x=sequenceds32,y=rarebacdscurve[[32]]),size=1)+
geom_line(aes(x=sequenceds31,y=rarebacdscurve[[31]]),size=1)+
geom_line(aes(x=sequenceds30,y=rarebacdscurve[[30]]),size=1)+
geom_line(aes(x=sequenceds29,y=rarebacdscurve[[29]]), size=1)+
geom_line(aes(x=sequenceds28,y=rarebacdscurve[[28]]), size=1)+
geom_line(aes(x=sequenceds27,y=rarebacdscurve[[27]]), size=1)+
geom_line(aes(x=sequenceds26,y=rarebacdscurve[[26]]),size=1)+
geom_line(aes(x=sequenceds25,y=rarebacdscurve[[25]]),size=1 )+
geom_line(aes(x=sequenceds24,y=rarebacdscurve[[24]]),size=1)+
geom_line(aes(x=sequenceds23,y=rarebacdscurve[[23]]),size=1)+
geom_line(aes(x=sequenceds22,y=rarebacdscurve[[22]]),size=1)+
geom_line(aes(x=sequenceds21,y=rarebacdscurve[[21]]),size=1)+
geom_line(aes(x=sequenceds20,y=rarebacdscurve[[20]]),size=1)+
geom_line(aes(x=sequenceds19,y=rarebacdscurve[[19]]), size=1)+
geom_line(aes(x=sequenceds18,y=rarebacdscurve[[18]]),size=1)+
geom_line(aes(x=sequenceds17,y=rarebacdscurve[[17]]),size=1)+
geom_line(aes(x=sequenceds16,y=rarebacdscurve[[16]]),size=1)+
geom_line(aes(x=sequenceds15,y=rarebacdscurve[[15]]),size=1)+
geom_line(aes(x=sequenceds14,y=rarebacdscurve[[14]]), size=1)+
geom_line(aes(x=sequenceds13,y=rarebacdscurve[[13]]), size=1)+
geom_line(aes(x=sequenceds12,y=rarebacdscurve[[12]]),size=1)+
geom_line(aes(x=sequenceds11,y=rarebacdscurve[[11]]),size=1 )+
geom_line(aes(x=sequenceds10,y=rarebacdscurve[[10]]),size=1)+
geom_line(aes(x=sequenceds9,y=rarebacdscurve[[9]]),size=1)+
geom_line(aes(x=sequenceds8,y=rarebacdscurve[[8]]),size=1)+
geom_line(aes(x=sequenceds7,y=rarebacdscurve[[7]]),size=1)+
geom_line(aes(x=sequenceds6,y=rarebacdscurve[[6]]),size=1)+
geom_line(aes(x=sequenceds5,y=rarebacdscurve[[5]]), size=1)+
geom_line(aes(x=sequenceds4,y=rarebacdscurve[[4]]),size=1)+
geom_line(aes(x=sequenceds3,y=rarebacdscurve[[3]]),size=1)+
geom_line(aes(x=sequenceds2,y=rarebacdscurve[[2]]),size=1)+
geom_line(aes(x=sequenceds1,y=rarebacdscurve[[1]]),size=1)+
geom_path(aes(x=2000,y=f), linetype=5)+
#scale_color_manual(values=c("#00CCCC","#336699","#336699","#336699","#663300","#663300","#00CCCC","#CC9933","#CC9933","#CC9933","#0000FF","#0000FF","#006600","#006600"))+
theme(panel.grid.major=element_blank(),
panel.grid.minor=element_blank(),
panel.background = element_blank(),
panel.border=element_rect(color="black", size=1, fill=NA))+
theme(axis.title.x=element_text(size=14, face="bold"))+
theme(axis.title.y=element_text(size=14, face="bold"))+
theme(axis.text.x=element_text(size=12, face="bold"))+
theme(axis.text.y=element_text(size=12, face="bold"))+
labs(x=("Sequencing Depth"), y=expression(bold(paste("OTU Richness", sep=""))))
dsrarecurv
#Save the rarefaction curves as a .png file at 300 dpi.
#ggsave(filename = "16s_drillshavings_rarecurve.png", plot(dsrarecurv),dpi=300)
Sample Rarefaction
Below I rarefy my samples using the rrarefy function from vegan. Rarefaction cut-offs are determined by reviewing the rarefaction curves and identifying the lowest number of sequences that minimizes sample loss but maximizing sampling depth across samples. Based on the above rarefaction curve, a cut-off of 2,000 sequences per samples results in the loss of seven samples (three from TN and four from WA).
#Here we are rarefying the data using the rrarefy function from vegan. I first use the sort function to determine the lowest number of sequences in a sample.
sort(rowSums(ds.pureotu[,1:4528]))
## TN132CDSBAC TN272BDSBAC WABNL20130DSBAC TN130ADSBAC WARN10272DSBAC
## 376 691 1278 1319 1378
## WABNL17272DSBAC WARN255DSBAC TN55CDSBAC INMCB755DSBAC TNWTMB19DSBAC
## 1708 1962 2088 2192 2332
## TNWTMB21DSBAC WABNL1955DSBAC TN272CDSBAC TN272ADSBAC INMCB26130DSBAC
## 2389 2471 2917 3016 3319
## TN55BDSBAC TNWTMB20DSBAC WABNL21WTDSBAC TN132BDSBAC TN55ADSBAC
## 3349 4172 4334 4453 4710
## INWTMCB33DSBAC INMCB16132DSBAC TNLS1DSBAC TN130BDSBAC INMCB655DSBAC
## 5077 5141 5186 5509 5655
## TN132ADSBAC WABNL18272DSBAC TNLS2DSBAC WARN4130DSBAC INMCB855DSBAC
## 5728 6023 6224 6615 6864
## INMCB27132DSBAC WARN9132DSBAC INMCB10272DSBAC TN130CDSBAC INMCB28WTDSBAC
## 6973 7126 7371 8097 8375
## INMCB9130DSBAC INMCB2130DSBAC INMCB11272DSBAC INWTMCB29DSBAC INMCB17132DSBAC
## 8603 8837 9246 9997 10608
## WABNL22WTDSBAC WARN155DSBAC TNLS3DSBAC WABNL23WTDSBAC WARN8132DSBAC
## 11832 12240 16021 16458 16854
## WARN7132DSBAC INMCB24272DSBAC
## 22993 43844
#Then using the rrarefy function from vegan, I rarefy my samples. The rarefaction cutoff or "sample" value is determined by evaluating my rarefaction curves and choosing the number of sequences that minimizes sample loss but maximizes sampling depth.
library(vegan)
ds.rareotu<-as.data.frame(rrarefy(ds.pureotu, sample=2000))
Good’s Coverage
Data Subsetting
Below I remove unrarefied samples (those less than minimum sequencing depth) as well as singleton OTUs (those with only one sequence following rarefaction).
#Because the rrarefy function doesn't automatically remove samples from the dataframe I subset the rarefied dataframe to remove unrarefied samples (those less than the minimum sequencing depth).
ds.rareotu<-as.data.frame(subset(ds.rareotu,rowSums(ds.rareotu)>=2000))
#First I create an object that contains the sample names of the samples that passed through the rarefaction step. This will be used to filter the metadata file.
ds.samples<-row.names(ds.rareotu)
ds.met.rare<-subset(ds.met,ds.met$Group%in% ds.samples)
#I am now removing OTUs present in the OTU table that were only present in samples removed following rarefaction. These OTUs will have column sums of 0.
ds.rareotu<-ds.rareotu[,colSums(ds.rareotu)>0]
#The following line is for saving the rarefied OTU table. This file is later reloaded to be used in downstream analyses. This is done to maintain consistency of results because rarefying generates slightly different results each time.
#write.table(ds.rareotu, "~/Documents/microbiome2017/16s_bark_otutable_rarefied_fa19_ajo.shared",sep="\t", row.names=TRUE)
#I am now removing singleton OTUs (OTUs with only 1 representative sequence following rarefaction). This is to limit the effects of rare species on our distance matrices used during ordination.
ds.rareotu.nosingletons<-ds.rareotu[,colSums(ds.rareotu)>1]
#The following line is for saving the rarefied OTU table with singletons removed. This file is later reloaded to be used in downstream analyses. This is done to maintain consistency of results because rarefying generates slightly different results each time.
#write.table(ds.rareotu.nosingletons, "~/Documents/microbiome2017/16s_bark_otutable_rarefied_nosingleton_fa19_ajo.shared",sep="\t", row.names=TRUE)
Relative Abundance Charts
To visualize differences in the relative abundance of different taxa, I reorganize the OTU table and taxonomy strings to create relative abundance stacked bar charts. Below, stacked bar charts are made for phylum, class, and order levels.
Taxonomy Subsetting
To begin, the taxonomy file is subsetted to include only taxonomy information for OTUs present in the rarefied OTU table with singletons removed. The OTU table is first transposed so that OTU IDs are the row names and sample names are the column names. Then the taxonomic assignments are added to the OTU table. Taxonomic strings are then split by semi-colon into individual columns by Phylum, Class, Order, Family, and Genus (SILVA does not go to species level).
#Now that samples have been rarefied I can perform alpha and beta diversity analyses on my data sets. To begin I first reformat my OTU table so that I can do some filtering and add taxonomy information.
ds.rareotu.nosingles<-read.table("Mothur_output/bark16sotutable.rarefied.nosingleton_jnigra17_fa19_ajo.shared", header=TRUE, sep="\t")
#I now transpose my OTU table so that I can begin to add in taxonomy information.
t.ds.rareotu.nosingles<-as.data.frame(t(ds.rareotu.nosingles))
#The below function is asking specifically for the OTU IDs. These are the row names. I will use these to subset the taxonomy file.
t.ds.rareotu.nosingleslabs<-labels(t.ds.rareotu.nosingles)
ds.taxrare<-subset(taxonomy.ds, rownames(taxonomy.ds) %in% t.ds.rareotu.nosingleslabs[[1]])
#Now I am subsetting the new taxonomy file to include only the taxonomy information stored in column 2.
ds.taxrareinfo<-(ds.taxrare[,2])
#Below I am using the separate function from tidyr to split the taxonomy strings into columns by semi-colon so that I can rename the OTUs to give them more meaning for downstream analyses.
library(tidyr)
#The SILVA database only provides classifications up to genus level, new columns are created only up to Genus level.
ds.taxonomylabs<-c("kingdom","phylum","class","order","family","genus")
#Below I create a new data frame with a column containing taxonomy information.
t.ds.rareotutabtax<-data.frame(taxonomy=ds.taxrareinfo,t.ds.rareotu.nosingles)
#I then separate the taxonomy strings into new columns labeled with the taxonomy labels saved in the taxonomylabs object. Strings are being separated based on the presence of semi-colons.
t.ds.rareotutabtaxsep<-separate(t.ds.rareotutabtax,into=ds.taxonomylabs,col=taxonomy,sep=";")
head(t.ds.rareotutabtaxsep)
## kingdom phylum class
## Otu0001 Bacteria(100) Proteobacteria(100) Gammaproteobacteria(100)
## Otu0002 Bacteria(100) Proteobacteria(100) Alphaproteobacteria(100)
## Otu0003 Bacteria(100) Proteobacteria(100) Alphaproteobacteria(100)
## Otu0004 Bacteria(100) Proteobacteria(100) Gammaproteobacteria(100)
## Otu0005 Bacteria(100) Bacteroidetes(100) Bacteroidia(100)
## Otu0006 Bacteria(100) Proteobacteria(100) Gammaproteobacteria(100)
## order family
## Otu0001 Enterobacteriales(100) Enterobacteriaceae(100)
## Otu0002 Sphingomonadales(100) Sphingomonadaceae(100)
## Otu0003 Sphingomonadales(100) Sphingomonadaceae(100)
## Otu0004 Betaproteobacteriales(100) Burkholderiaceae(100)
## Otu0005 Sphingobacteriales(100) Sphingobacteriaceae(100)
## Otu0006 Betaproteobacteriales(100) Burkholderiaceae(100)
## genus INMCB10272DSBAC INMCB11272DSBAC
## Otu0001 Enterobacteriaceae_unclassified(100) 0 0
## Otu0002 Sphingomonas(95) 64 97
## Otu0003 Sphingomonas(100) 0 0
## Otu0004 Burkholderiaceae_unclassified(96) 0 0
## Otu0005 Sphingobacteriaceae_unclassified(79) 0 3
## Otu0006 Massilia(100) 4 11
## INMCB16132DSBAC INMCB17132DSBAC INMCB2130DSBAC INMCB24272DSBAC
## Otu0001 5 28 20 0
## Otu0002 34 24 59 64
## Otu0003 0 0 1 0
## Otu0004 1 3 1 0
## Otu0005 4 1 5 0
## Otu0006 8 2 11 1
## INMCB26130DSBAC INMCB27132DSBAC INMCB28WTDSBAC INMCB655DSBAC
## Otu0001 1 0 83 2
## Otu0002 54 107 74 83
## Otu0003 0 0 0 0
## Otu0004 0 0 0 0
## Otu0005 11 17 9 11
## Otu0006 17 7 13 30
## INMCB755DSBAC INMCB855DSBAC INMCB9130DSBAC INWTMCB29DSBAC
## Otu0001 49 0 0 11
## Otu0002 59 77 51 84
## Otu0003 0 0 0 1
## Otu0004 4 1 3 3
## Otu0005 1 8 5 1
## Otu0006 18 14 1 5
## INWTMCB33DSBAC TN130BDSBAC TN130CDSBAC TN132ADSBAC TN132BDSBAC
## Otu0001 1 10 23 2 3
## Otu0002 104 119 141 106 138
## Otu0003 0 4 0 0 2
## Otu0004 0 0 4 0 1
## Otu0005 4 10 46 3 17
## Otu0006 8 7 45 3 0
## TN272ADSBAC TN272CDSBAC TN55ADSBAC TN55BDSBAC TN55CDSBAC TNLS1DSBAC
## Otu0001 2 35 0 4 0 329
## Otu0002 65 108 74 44 80 63
## Otu0003 1 3 2 0 0 0
## Otu0004 13 0 0 0 0 0
## Otu0005 5 22 17 8 40 1
## Otu0006 5 4 6 1 2 0
## TNLS2DSBAC TNLS3DSBAC TNWTMB19DSBAC TNWTMB20DSBAC TNWTMB21DSBAC
## Otu0001 236 1013 166 2 4
## Otu0002 73 20 93 88 86
## Otu0003 0 0 5 0 0
## Otu0004 2 0 0 0 0
## Otu0005 11 5 14 6 3
## Otu0006 2 0 25 6 8
## WABNL18272DSBAC WABNL1955DSBAC WABNL21WTDSBAC WABNL22WTDSBAC
## Otu0001 556 79 5 1
## Otu0002 52 78 71 94
## Otu0003 163 60 162 152
## Otu0004 57 38 120 133
## Otu0005 165 137 141 227
## Otu0006 75 145 231 168
## WABNL23WTDSBAC WARN155DSBAC WARN4130DSBAC WARN7132DSBAC WARN8132DSBAC
## Otu0001 190 160 121 39 19
## Otu0002 52 44 22 43 32
## Otu0003 327 133 57 133 72
## Otu0004 143 139 136 175 123
## Otu0005 95 78 62 102 57
## Otu0006 175 85 83 96 29
## WARN9132DSBAC
## Otu0001 51
## Otu0002 40
## Otu0003 152
## Otu0004 90
## Otu0005 59
## Otu0006 98
Relative Abundance OTU Table
I then create a relative abundance OTU table. This table contains taxonomic information and can be searched to look at specific OTUs more easily.
#Now that samples have been rarefied I can perform alpha and beta diversity analyses on my data sets. To begin I first reformat my OTU table so that I can do some filtering and add taxonomy information.
ds.rareotu.nosingles<-read.table("Mothur_output/bark16sotutable.rarefied.nosingleton_jnigra17_fa19_ajo.shared", header=TRUE, sep="\t")
ds.rareotu.nosingles.table<-decostand(ds.rareotu.nosingles,method="total")
#I now transpose my OTU table so that I can begin to add in taxonomy information.
t.ds.rareotu.nosingles.table<-as.data.frame(t(ds.rareotu.nosingles.table))
#The below function is asking specifically for the OTU IDs. These are the row names. I will use these to subset the taxonomy file.
t.ds.rareotu.nosingleslabs<-labels(t.ds.rareotu.nosingles.table)
ds.taxrare<-subset(taxonomy.ds, rownames(taxonomy.ds) %in% t.ds.rareotu.nosingleslabs[[1]])
#Now I am subsetting the new taxonomy file to include only the taxonomy information stored in column 2.
ds.taxrareinfo<-(ds.taxrare[,2])
#Below I am using the separate function from tidyr to split the taxonomy strings into columns by semi-colon so that I can rename the OTUs to give them more meaning for downstream analyses.
library(tidyr)
#The SILVA database only provides classifications up to genus level, new columns are created only up to Genus level.
ds.taxonomylabs<-c("kingdom","phylum","class","order","family","genus")
#Below I create a new data frame with a column containing taxonomy information.
t.ds.rareotutabtax.table<-data.frame(taxonomy=ds.taxrareinfo,t.ds.rareotu.nosingles.table)
#I then separate the taxonomy strings into new columns labeled with the taxonomy labels saved in the taxonomylabs object. Strings are being separated based on the presence of semi-colons.
t.ds.rareotutabtaxsep.table<-separate(t.ds.rareotutabtax.table,into=ds.taxonomylabs,col=taxonomy,sep=";")
datatable(t.ds.rareotutabtaxsep.table, fillContainer = T, height="500dpx")
Phylum Relative Abudance Charts
Below I generate a phylum relative abundance plot. I first extract the phylum information. I then clean the taxa names to remove assignment confidence values. OTU raw abundance is then summed by phylum and state, phyla that represent less than 1% of the total community are grouped into other, and relative abundance is calculated. Stacked bar charts are made using the melt function and ggplot.
#Below I create a data frame that consists of phylum assignment and the rarefied OTU table.
t.ds.raretabphy<-data.frame(phylum=t.ds.rareotutabtaxsep$phylum,t.ds.rareotu.nosingles)
#I then remove the assignment confidence values contained in parentheses found in each taxonomic string using the sub function.
t.ds.raretabphy$phylum<-sub("\\(.*)","",x=t.ds.raretabphy$phylum)
#The following code is for the generation of phylum relative abundance stacked bar charts. I first sum each OTU by the phylum it belongs to.
library(plyr)
t.ds.rareotutabphy<-as.data.frame(ddply(t.ds.raretabphy, .(phylum),colwise(sum)))
rownames(t.ds.rareotutabphy)<-make.names(t.ds.rareotutabphy$phylum)
t.ds.rareotutabphy<-t.ds.rareotutabphy[,2:41]
#I then transpose the data frame so that sample names are now row names and column names are OTU names.
ds.rareotutabphy<-as.data.frame(t(t.ds.rareotutabphy))
ds.rareotutabphy.state<-data.frame(state=ds.met.rare$State,ds.rareotutabphy)
#I then sum each OTU by state and subset to exclude sample names. This is because the following functions only work on matrices containing numeric data.
ds.rareotutabphy.statesum<-as.data.frame(ddply(ds.rareotutabphy.state, .(state),colwise(sum)))
ds.phylumcols<-ds.rareotutabphy.statesum[,2:20]
#I am now creating an other category. Other includes those OTUs belonging to a phylum that comprises less than 1% of the total community. This new object is referred to as phyothers.
ds.phyoth<-ds.phylumcols[,colSums(ds.phylumcols)/sum(ds.phylumcols)<=0.01]
ds.phyothers<-rowSums(ds.phyoth)
#I then create an object that contains all of the phyla that comprise more than 1% of the total community.
ds.phyreg<-ds.phylumcols[,colSums(ds.phylumcols)/sum(ds.phylumcols)>0.01]
#I then create a new dataframe containing the state information, the other column, and the remaining phyla.
ds.phytot2<-data.frame(state=ds.rareotutabphy.statesum$state,ds.phyreg,Other=ds.phyothers)
#These values are then converted to relative abundance using the decostand function from vegan.
library(vegan)
ds.phyrelabund<-decostand(ds.phytot2[,2:10],method="total")
ds.phyrelabund<-data.frame(state=ds.rareotutabphy.statesum$state,ds.phyrelabund)
#Below I use the melt function from the data.table package to reformat the data into stacked bar graph format.
library(data.table)
library(ggplot2)
library(ggpubr)
library(RColorBrewer)
ds.phyrelabundmelt<-melt(ds.phyrelabund, id.vars="state", variable.name="Phylum")
ds.colors.n.phylum <- length(unique(ds.phyrelabundmelt[,'Phylum']))
#Below I generate the relative abundance bar charts in ggplot
ds.phyrel<-ggplot(ds.phyrelabundmelt, aes(x=state, y=value, fill=Phylum))+
geom_bar(stat="identity", show.legend=TRUE, color="black")+
scale_fill_manual(values=colorRampPalette(brewer.pal(9, 'Set1'))(ds.colors.n.phylum)) +
xlab("State") +
ylab("Relative Abundance") +
scale_y_continuous(breaks=c(0,0.25,0.50,0.75,1),limits=c(0,1.05))+
theme(panel.border = element_blank(), panel.background=element_blank(),panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text.x = element_text(size = 14), axis.ticks.x = element_blank(), axis.text.y = element_text(size = 14), axis.line.y.left = element_line(), axis.title.y = element_text(size = 14))+
geom_text(data=NULL,aes(x=0.5, y=1.05,label="Caulosphere: 16S"),hjust=0,colour="black")
library(plotly)
ggplotly(ds.phyrel,tooltip=c("Phylum"))
Class Relative Abundance Chart
Below I generate a class relative abundance plot. I first extract the class information from the OTU table that contains the taxonomy information. I then clean the taxa names to remove assignment confidence values and other non-taxonomic associated string portions from the class assignment. I then create an unknown group which consists of uncultured bacteria and bacteria unclassified at the class level. OTU raw abundance is then summed by class and state, classes that represent less than 1% of the total community are grouped into other, and relative abundance is calculated. Stacked bar charts are made using the melt function from ggplot.
#The following chunk creates a relative abundance bar chart at the class level.
library(plyr)
t.ds.raretabcls<-data.frame(class=t.ds.rareotutabtaxsep$class,t.ds.rareotu.nosingles)
#What I am doing below is cleaning up the class names. These include assignment confidence levels, _or, and _.
t.ds.raretabcls$class<-sub("\\(.*)","",x=t.ds.raretabcls$class)
t.ds.raretabcls$class<-sub("_or","",x=t.ds.raretabcls$class)
t.ds.raretabcls$class<-sub("_"," ",x=t.ds.raretabcls$class)
#I then sum the OTUs by class and make the row names the class name.
t.ds.rareotutabcls<-as.data.frame(ddply(t.ds.raretabcls, .(class),colwise(sum)))
rownames(t.ds.rareotutabcls)<-make.names(t.ds.rareotutabcls$class)
t.ds.rareotutabcls<-t.ds.rareotutabcls[,2:41]
#I then transpose the data frame and sum each class by state.
ds.rareotutabcls<-as.data.frame(t(t.ds.rareotutabcls))
ds.rareotutabcls.state<-data.frame(state=ds.met.rare$State,ds.rareotutabcls)
ds.rareotutabcls.statesum<-as.data.frame(ddply(ds.rareotutabcls.state, .(state),colwise(sum)))
#At the class level, SILVA may classify things as unknown class, phylum.unclassified, or uncultured. These don't provide a lot of information and thus are grouped into a knew group called unknown.
ds.clsunknown<-ds.rareotutabcls.statesum[,grep(".unclassified|Unknown.class|uncultured",names(ds.rareotutabcls.statesum))]
ds.clsunknownsum<-rowSums(ds.clsunknown)
#I then use the same grep function as above to pull out the class with meaningful information. By setting invert=TRUE I select items lacking the strings in the grep command.
ds.clstot<-ds.rareotutabcls.statesum[,grep(".unclassified|Unknown.class|uncultured",names(ds.rareotutabcls.statesum), invert=TRUE)]
#I then subset the data so that only numerical data is present and creating a new class of objects, other, that includes OTUs from classes that represent 1% or less of the total community.
ds.clscols<-ds.clstot[,2:44]
ds.clsoth<-ds.clscols[,colSums(ds.clscols)/sum(ds.clscols)<=0.01]
ds.clsothers<-rowSums(ds.clsoth)
ds.clsreg<-ds.clscols[,colSums(ds.clscols)/sum(ds.clscols)>0.01]
#I then create a new data frame that contains all of the class data and determine relative abundance using the decostand function from vegan.
ds.clstot2<-data.frame(state=ds.clstot$state,ds.clsreg,Other=ds.clsothers,Unclassified=ds.clsunknownsum)
library(vegan)
ds.clsrelabund<-decostand(ds.clstot2[,2:12],method="total")
ds.clsrelabund<-data.frame(state=ds.rareotutabcls.statesum$state,ds.clsrelabund)
#Below I use the melt function from the data.table package to reformat the data into stacked bar graph format.
library(data.table)
library(ggplot2)
library(ggpubr)
library(RColorBrewer)
ds.clsrelabundmelt<-melt(ds.clsrelabund, id.vars="state", variable.name="class")
ds.cls.colorCount<- length(unique(ds.clsrelabundmelt[,'class']))
getPalette=colorRampPalette(brewer.pal(9,"Set1"))
#Below I generate the relative abundance bar charts in ggplot
ds.clsrel<-ggplot(ds.clsrelabundmelt, aes(x=state, y=value, fill=class))+
geom_bar(stat="identity",show.legend=TRUE,color="black")+
scale_fill_manual(values=getPalette(ds.cls.colorCount))+
xlab("State") +
ylab("Relative Abundance") +
theme(panel.border = element_blank(),panel.background=element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text.x = element_text(size = 14), axis.ticks.x = element_blank(), axis.text.y = element_text(size = 14), axis.line.y.left = element_line(), axis.title.y = element_text(size = 14))+
scale_y_continuous(breaks=c(0,0.25,0.50,0.75,1),limits=c(0,1.05))+
geom_text(data=NULL,aes(x=0.51, y=1.05,label="Caulosphere: 16S"),hjust=0,colour="black")
library(plotly)
ggplotly(ds.clsrel,tooltip=c("class"))
Order Relative Abundance Chart
Below I generate an order relative abundance plot. I first extract the order information from the OTU table that contains the taxonomy information. I then clean the taxa names to remove assignment confidence values and other non-taxonomic associated string portions from the order assignment. I then create an unknown group which consists of uncultured bacteria and bacteria unclassified at the order level. OTU raw abundance is then summed by order and state, orders that represent less than 1% of the total community are grouped into other, and relative abundance is calculated. Stacked bar charts are made using the melt function from ggplot.
#The following chunk creates a relative abundance bar chart at the order level.
#What I am doing below is cleaning up the order names. These include assignment confidence levels, _or, and _.
library(plyr)
t.ds.raretabord<-data.frame(order=t.ds.rareotutabtaxsep$order,t.ds.rareotu.nosingles)
t.ds.raretabord$order<-sub("\\(.*)","",x=t.ds.raretabord$order)
t.ds.raretabord$order<-sub("_or","",x=t.ds.raretabord$order)
t.ds.raretabord$order<-sub("_"," ",x=t.ds.raretabord$order)
#I then sum the OTUs by class and make the row names the order name.
t.ds.rareotutabord<-as.data.frame(ddply(t.ds.raretabord, .(order),colwise(sum)))
rownames(t.ds.rareotutabord)<-make.names(t.ds.rareotutabord$order)
t.ds.rareotutabord<-t.ds.rareotutabord[,2:41]
#I then transpose the data frame and sum each order by state.
ds.rareotutabord<-as.data.frame(t(t.ds.rareotutabord))
ds.rareotutabord.state<-data.frame(state=ds.met.rare$State,ds.rareotutabord)
ds.rareotutabord.statesum<-as.data.frame(ddply(ds.rareotutabord.state, .(state),colwise(sum)))
#At the class level, SILVA may classify things as unknown class, phylum.unclassified, or uncultured. These don't provide a lot of information and thus are grouped into a knew group called unknown.
ds.ordunknown<-ds.rareotutabord.statesum[,grep(".unclassified|Unknown.Order|uncultured",names(ds.rareotutabord.statesum))]
#I then use the same grep function as above to pull out the order with meaningful information. By setting invert=TRUE I select items lacking the strings in the grep command.
ds.ordunknownsum<-rowSums(ds.ordunknown)
ds.ordtot<-ds.rareotutabord.statesum[,grep(".unclassified|Unknown.Order|uncultured",names(ds.rareotutabord.statesum), invert=TRUE)]
#I then subset the data so that only numerical data is present and creating a new class of objects, other, that includes OTUs from order that represent 1% or less of the total community.
ds.ordcols<-ds.ordtot[,2:92]
ds.ordoth<-ds.ordcols[,colSums(ds.ordcols)/sum(ds.ordcols)<=0.01]
ds.ordothers<-rowSums(ds.ordoth)
ds.ordreg<-ds.ordcols[,colSums(ds.ordcols)/sum(ds.ordcols)>0.01]
#I then create a new data frame that contains all of the order data and determine relative abundance using the decostand function from vegan.
library(vegan)
ds.ordtot2<-data.frame(state=ds.ordtot$state,ds.ordreg,Other=ds.ordothers, Unclassified=ds.ordunknownsum)
ds.ordrelabund<-decostand(ds.ordtot2[,2:25],method="total")
ds.ordrelabund<-data.frame(state=ds.rareotutabord.statesum$state,ds.ordrelabund)
#Below I use the melt function from the data.table package to reformat the data into stacked bar graph format.
library(data.table)
library(ggplot2)
library(ggpubr)
library(RColorBrewer)
ds.ordrelabundmelt<-melt(ds.ordrelabund, id.vars="state", variable.name="order")
ds.ord.colorCount<- length(unique(ds.ordrelabundmelt[,'order']))
getPalette=colorRampPalette(brewer.pal(9,"Set1"))
#Below I generate the relative abundance bar charts in ggplot
ds.ordrel<-ggplot(ds.ordrelabundmelt, aes(x=state, y=value, fill=order))+
geom_bar(stat="identity",show.legend=TRUE,color="black")+
scale_fill_manual(values=getPalette(ds.ord.colorCount))+
xlab("State") +
ylab("Relative Abundance") +
theme(panel.border = element_blank(),panel.background=element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text.x = element_text(size = 14), axis.ticks.x = element_blank(), axis.text.y = element_text(size = 14), axis.line.y.left = element_line(), axis.title.y = element_text(size = 14))+
scale_y_continuous(breaks=c(0,0.25,0.50,0.75,1),limits=c(0,1.05))+
geom_text(data=NULL,aes(x=0.51, y=1.05,label="Caulosphere: 16S"),hjust=0,colour="black")
library(plotly)
ggplotly(ds.ordrel,tooltip=c("order"))
#The following chunk creates a relative abundance bar chart at the order level.
#What I am doing below is cleaning up the order names. These include assignment confidence levels, _or, and _.
library(plyr)
t.ds.raretabfam<-data.frame(family=t.ds.rareotutabtaxsep$family,t.ds.rareotu.nosingles)
t.ds.raretabfam$family<-sub("\\(.*)","",x=t.ds.raretabfam$family)
t.ds.raretabfam$family<-sub("_or","",x=t.ds.raretabfam$family)
t.ds.raretabfam$family<-sub("_"," ",x=t.ds.raretabfam$family)
#I then sum the OTUs by class and make the row names the order name.
t.ds.rareotutabfam<-as.data.frame(ddply(t.ds.raretabfam, .(family),colwise(sum)))
rownames(t.ds.rareotutabfam)<-make.names(t.ds.rareotutabfam$family)
t.ds.rareotutabfam<-t.ds.rareotutabfam[,2:41]
#I then transpose the data frame and sum each order by state.
ds.rareotutabfam<-as.data.frame(t(t.ds.rareotutabfam))
ds.rareotutabfam.state<-data.frame(state=ds.met.rare$State,ds.rareotutabfam)
ds.rareotutabfam.statesum<-as.data.frame(ddply(ds.rareotutabfam.state, .(state),colwise(sum)))
#At the class level, SILVA may classify things as unknown class, phylum.unclassified, or uncultured. These don't provide a lot of information and thus are grouped into a knew group called unknown.
ds.famunknown<-ds.rareotutabfam.statesum[,grep(".unclassified|Unknown.Family|uncultured",names(ds.rareotutabfam.statesum))]
#I then use the same grep function as above to pull out the Family with meaningful information. By setting invert=TRUE I select items lacking the strings in the grep command.
ds.famunknownsum<-rowSums(ds.famunknown)
ds.famtot<-ds.rareotutabfam.statesum[,grep(".unclassified|Unknown.Family|uncultured",names(ds.rareotutabfam.statesum), invert=TRUE)]
#I then subset the data so that only numerical data is present and creating a new class of objects, other, that includes OTUs from order that represent 1% or less of the total community.
ds.famcols<-ds.famtot[,2:153]
ds.famoth<-ds.famcols[,colSums(ds.famcols)/sum(ds.famcols)<=0.01]
ds.famothers<-rowSums(ds.famoth)
ds.famreg<-ds.famcols[,colSums(ds.famcols)/sum(ds.famcols)>0.01]
#I then create a new data frame that contains all of the order data and determine relative abundance using the decostand function from vegan.
library(vegan)
ds.famtot2<-data.frame(state=ds.famtot$state,ds.famreg,Other=ds.famothers, Unclassified=ds.famunknownsum)
ds.famrelabund<-decostand(ds.famtot2[,2:25],method="total")
ds.famrelabund<-data.frame(state=ds.rareotutabfam.statesum$state,ds.famrelabund)
#Below I use the melt function from the data.table package to reformat the data into stacked bar graph format.
library(data.table)
library(ggplot2)
library(ggpubr)
library(RColorBrewer)
ds.famrelabundmelt<-melt(ds.famrelabund, id.vars="state", variable.name="family")
ds.fam.colorCount<- length(unique(ds.famrelabundmelt[,'family']))
getPalette=colorRampPalette(brewer.pal(9,"Set1"))
#Below I generate the relative abundance bar charts in ggplot
ds.famrel<-ggplot(ds.famrelabundmelt, aes(x=state, y=value, fill=family))+
geom_bar(stat="identity",show.legend=TRUE,color="black")+
scale_fill_manual(values=getPalette(ds.fam.colorCount))+
xlab("State") +
ylab("Relative Abundance") +
theme(panel.border = element_blank(),panel.background=element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text.x = element_text(size = 14), axis.ticks.x = element_blank(), axis.text.y = element_text(size = 14), axis.line.y.left = element_line(), axis.title.y = element_text(size = 14))+
scale_y_continuous(breaks=c(0,0.25,0.50,0.75,1),limits=c(0,1.05))+
geom_text(data=NULL,aes(x=0.51, y=1.05,label="Caulosphere: 16S"),hjust=0,colour="black")
library(plotly)
ggplotly(ds.famrel,tooltip=c("family"))
Taxonomy Filtering and Merging
Taxonomy is first filtered to include only those OTUs present in the rarefied OTU table with no singletons. Then the OTU table is transposed so that OTU ID is the row name and sample ID is the column name. Taxonomy strings are then added to the OTU table and strings are split by semi-colon.
#Below I am reformatting the OTU table so that I can begin to filter and merge the taxonomy information.
#I first transpose the rarefied OTU table with no singletons.
t.ds.rareotu.nosingles<-as.data.frame(t(ds.rareotu.nosingles))
#The below function is asking specifically for the OTU IDs. These are the row names. I will use these to subset the taxonomy file.
t.ds.rareotu.nosingleslabs<-labels(t.ds.rareotu.nosingles)
ds.taxrare<-subset(taxonomy.ds, rownames(taxonomy.ds) %in% t.ds.rareotu.nosingleslabs[[1]])
ds.taxrareinfo<-(ds.taxrare[,2])
#Below I am using the separate function from tidyr to split the taxonomy strings into columns by semi-colon so that I can rename the OTUs to give them more meaning for downstream analyses.
library(tidyr)
ds.taxonomylabs<-c("kingdom","phylum","class","order","family","genus")
t.ds.rareotutabtax<-data.frame(taxonomy=ds.taxrareinfo,t.ds.rareotu.nosingles)
t.ds.rareotutabtaxsep<-separate(t.ds.rareotutabtax,into=ds.taxonomylabs,col=taxonomy,sep=";")
Renaming of OTUs
OTUs are then renamed. Prior to official renaming, taxonomy strings are cleaned so that assignment confidence values and taxon leaders and any _unclassifed tails are removed.
#Here I am renaming the OTUs using the make.names function. This will make the OTU name something more informative. I am using genus to do this.
t.ds.rareotutabtaxsep$genus<-sub("\\(.*)","",x=t.ds.rareotutabtaxsep$genus)
t.ds.rareotutabtaxsep$genus<-sub("(_unclassified)","",x=t.ds.rareotutabtaxsep$genus)
t.ds.rareotutabtax.rename<-t.ds.rareotutabtaxsep[,7:46]
rownames(t.ds.rareotutabtaxsep)<-make.names(paste(rownames(t.ds.rareotutabtaxsep),t.ds.rareotutabtaxsep$genus,sep="_"))
ds.rareotutabtax.rename<-as.data.frame(t(t.ds.rareotutabtax.rename))
Principal Coordinate Analysis
To visually assess differences in the community composition of drill shaving bacterial communities by clone and state, I perform a principal coordinate analysis (PCoA).
Relative Abundance Calculation
Prior to conducting a PCoA I first convert my OTU table from raw OTU abundances to relative abundance.
Principal Coordinate Analysis
I then perform the PCoA using the pcoa function from the ape package. Prior to performing the PCoA, a distance matrix needs to be calculated for the OTU table. In this case, I use the bray-curtis method.
Plotting of Principal Coordinate Analysis
Then to plot the PCoA, I use the ggplot function. To use ggplot I need to first pull out the site scores for each sample and generate ellipses.
#We need to first subset our metadata table to include only those samples that passed rarefaction.
ds.met.rare<-subset(ds.met,ds.met$Group%in% ds.samples)
#Then we extract PCoA site scores (these will be the x and y coordinates for each sample)
ds.bac.pcoavec<-as.data.frame(ds.bac.pcoa$vectors)
ds.bac.pcoasitescores<-data.frame(PC1=ds.bac.pcoavec$Axis.1, PC2=ds.bac.pcoavec$Axis.2)
#Create a new dataframe that includes the site scores from above with metadata from your study.
ds.bac.pcoagraph<-data.frame(ds.bac.pcoasitescores,PC1=ds.bac.pcoasitescores$PC1, PC2=ds.bac.pcoasitescores$PC2, State=ds.met.rare$State, Clone=ds.met.rare$Clone,group=ds.met.rare$Group)
#This is where you make confidence ellipses. I don't know what all the code means. Just know where to plug in my objects.
ds.bac.pcoaellipse<-ordiellipse(ds.bac.pcoasitescores,ds.bac.pcoagraph$State, display="sites", kind="sd", draw="none")
df_ell.bark16s <- data.frame()
for(g in levels(ds.bac.pcoagraph$State)){
df_ell.bark16s <- rbind(df_ell.bark16s, cbind(as.data.frame(with(ds.bac.pcoagraph[ds.bac.pcoagraph$State==g,], vegan:::veganCovEllipse(ds.bac.pcoaellipse[[g]]$cov,ds.bac.pcoaellipse[[g]]$center,ds.bac.pcoaellipse[[g]]$scale))) ,State=g))}
#Plot PCoA in ggplot
library(ggplot2)
ds.pcoa<-ggplot(ds.bac.pcoagraph, aes(PC1,PC2))+
#geom_text(aes(label=group))+
geom_path(data=df_ell.bark16s, aes(x=PC1, y=PC2, colour=State),size=0.5, linetype=1)+
geom_point(aes(shape=Clone,colour=State), size=3.5)+
xlab("PC1 (32.0%)")+
ylab("PC2 (12.4%)")+
theme(axis.title.x=element_text(size=14, face="bold"))+
theme(axis.title.y=element_text(size=14, face="bold"))+
theme(axis.text.x=element_text(size=12, face="bold"))+
theme(axis.text.y=element_text(size=12, face="bold"))+
scale_color_manual(values=c("#006600","#3399FF","#FF9900"))+
geom_text(aes(x=-0.60, y=0.60, label="Caulosphere: 16S"),hjust=0,colour="black")+
scale_shape_manual(values=c(16,10,8,7,0,2))+
scale_x_continuous(breaks=c(-0.60,-0.30,0,0.30,0.60),limits=c(-0.60,0.60))+
scale_y_continuous(breaks=c(-0.60,-0.30,0,0.30,0.60),limits=c(-.60,.60))+
theme(panel.grid.major=element_blank(),
panel.grid.minor=element_blank(),
panel.border=element_rect(colour="black", size=1, fill=NA))+
theme(panel.grid.major=element_blank(),
panel.grid.minor=element_blank(),
panel.background = element_blank(),
panel.border=element_rect(color="black", size=1, fill=NA))
ds.pcoa
PERMANOVA
To formally test how well state and clone explain differences in drill shaving bacterial community composition, I perform a PERMANOVA using the adonis function from vegan
#Below I perform permanovas by state and clone using the adonis function from vegan.
library(vegan)
ds.bac.perm.state.inter<-adonis(ds.relabund~ds.met.rare$State*ds.met.rare$Clone, method="bray",permutations=10000)
ds.bac.perm.state.inter
##
## Call:
## adonis(formula = ds.relabund ~ ds.met.rare$State * ds.met.rare$Clone, permutations = 10000, method = "bray")
##
## Permutation: free
## Number of permutations: 10000
##
## Terms added sequentially (first to last)
##
## Df SumsOfSqs MeanSqs F.Model R2
## ds.met.rare$State 2 4.1757 2.08784 13.4448 0.39801
## ds.met.rare$Clone 4 0.8928 0.22320 1.4373 0.08510
## ds.met.rare$State:ds.met.rare$Clone 8 1.5407 0.19259 1.2402 0.14685
## Residuals 25 3.8822 0.15529 0.37004
## Total 39 10.4914 1.00000
## Pr(>F)
## ds.met.rare$State 9.999e-05 ***
## ds.met.rare$Clone 0.06659 .
## ds.met.rare$State:ds.met.rare$Clone 0.10959
## Residuals
## Total
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ds.bac.perm.state.add<-adonis(ds.relabund~ds.met.rare$State+ds.met.rare$Clone, method="bray",permutations=10000)
ds.bac.perm.state.add
##
## Call:
## adonis(formula = ds.relabund ~ ds.met.rare$State + ds.met.rare$Clone, permutations = 10000, method = "bray")
##
## Permutation: free
## Number of permutations: 10000
##
## Terms added sequentially (first to last)
##
## Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
## ds.met.rare$State 2 4.1757 2.08784 12.7051 0.39801 9.999e-05 ***
## ds.met.rare$Clone 4 0.8928 0.22320 1.3582 0.08510 0.09219 .
## Residuals 33 5.4229 0.16433 0.51689
## Total 39 10.4914 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ds.bac.perm.state.sing<-adonis(ds.relabund~ds.met.rare$State, method="bray",permutations=10000)
ds.bac.perm.state.sing
##
## Call:
## adonis(formula = ds.relabund ~ ds.met.rare$State, permutations = 10000, method = "bray")
##
## Permutation: free
## Number of permutations: 10000
##
## Terms added sequentially (first to last)
##
## Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
## ds.met.rare$State 2 4.1757 2.0878 12.231 0.39801 9.999e-05 ***
## Residuals 37 6.3157 0.1707 0.60199
## Total 39 10.4914 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Richness and Diversity
Then to assess the alpha diversity of our samples, I calculate the observed richness and shannon diversity index using the vegan package. This is done using the rarefied OTU table that contains singletons. Singletons are included to keep sampling depth standard between samples.
Richness
Observed OTU richness is first calculated for each sample. Then due to the unbalanced nature of our study design, we use a type 3 ANOVA.
#In this chunk we calculate richness and create a data frame including richness with metadata
#I first import my rarefied OTU table that contains singletons.
ds.rareotu.wsingles<-read.table("Mothur_output/bark16sotutable.rarefied_jnigra17_fa19_ajo.shared", header=TRUE, sep="\t")
#Below I calculate observed species richness using the specnumber function from vegan. I then create a new data frame to include sample metadata.
library(vegan)
ds.bac.rich<-specnumber(ds.rareotu.wsingles)
ds.richnesstabmet<-data.frame(State=ds.met.rare$State, clone=ds.met.rare$Clone, sample=ds.met.rare$Group,Richness=ds.bac.rich)
#I first test for a significant interaction between state and clone. Due to the unbalanced design we use a type 3 ANOVA.
library(car)
ds.anova.typ3.rich<-aov((Richness)~State*clone, data=ds.richnesstabmet)
ds.typ3aov.rich<-Anova(ds.anova.typ3.rich,type="III")
ds.typ3aov.rich
## Anova Table (Type III tests)
##
## Response: (Richness)
## Sum Sq Df F value Pr(>F)
## (Intercept) 984987 1 392.9658 < 2.2e-16 ***
## State 159328 2 31.7824 1.36e-07 ***
## clone 36200 4 3.6105 0.01867 *
## State:clone 31512 8 1.5715 0.18376
## Residuals 62664 25
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Sum Sq | Df | F value | Pr(>F) | |
---|---|---|---|---|
(Intercept) | 984987.00 | 1 | 392.965754 | 0.0000000 |
State | 159328.33 | 2 | 31.782439 | 0.0000001 |
clone | 36200.00 | 4 | 3.610545 | 0.0186698 |
State:clone | 31511.65 | 8 | 1.571467 | 0.1837637 |
Residuals | 62663.67 | 25 | NA | NA |
#The below two lines generate plots to evaluate regression assumptions.
par(mfrow=c(2,2))
plot(ds.anova.typ3.rich)
## Warning: not plotting observations with leverage one:
## 31, 37
## Warning: not plotting observations with leverage one:
## 31, 37
#There was no significant interaction between state and clone and thus we drop the interaction term.
ds.anova.add.rich<-aov((Richness)~State+clone, data=ds.richnesstabmet)
ds.add.aov.rich<-Anova(ds.anova.add.rich,type="III")
ds.add.aov.rich
## Anova Table (Type III tests)
##
## Response: (Richness)
## Sum Sq Df F value Pr(>F)
## (Intercept) 1572843 1 551.1404 < 2e-16 ***
## State 810316 2 141.9715 < 2e-16 ***
## clone 26160 4 2.2917 0.08036 .
## Residuals 94175 33
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Sum Sq | Df | F value | Pr(>F) | |
---|---|---|---|---|
(Intercept) | 1572843.02 | 1 | 551.14041 | 0.0000000 |
State | 810315.90 | 2 | 141.97152 | 0.0000000 |
clone | 26159.62 | 4 | 2.29165 | 0.0803565 |
Residuals | 94175.31 | 33 | NA | NA |
#Perform Tukey test
ds.add.aov.rich.tukey<-(TukeyHSD(ds.anova.add.rich))
ds.add.aov.rich.tukey.table<-rbind(ds.add.aov.rich.tukey$State,ds.add.aov.rich.tukey$clone)
ds.add.aov.rich.tukey.table
## diff lwr upr p adj
## TN-IN -199.266667 -247.13178 -151.401550 2.833811e-11
## WA-IN -374.000000 -427.51483 -320.485172 5.861978e-14
## WA-TN -174.733333 -228.24816 -121.218506 9.038830e-09
## 132-130 -80.522222 -163.73650 2.692059 6.176245e-02
## 272-130 -55.333333 -144.29314 33.626476 3.939450e-01
## 55-130 -59.238889 -142.45317 23.975393 2.641783e-01
## WT-130 -34.455556 -111.49701 42.585899 6.990368e-01
## 272-132 25.188889 -58.02539 108.403171 9.047050e-01
## 55-132 21.283333 -55.75812 98.324788 9.296912e-01
## WT-132 46.066667 -24.26224 116.395571 3.427999e-01
## 55-272 -3.905556 -87.11984 79.308726 9.999201e-01
## WT-272 20.877778 -56.16368 97.919232 9.341341e-01
## WT-55 24.783333 -45.54557 95.112238 8.459852e-01
diff | lwr | upr | p adj | |
---|---|---|---|---|
TN-IN | -199.266667 | -247.13178 | -151.401550 | 0.0000000 |
WA-IN | -374.000000 | -427.51483 | -320.485172 | 0.0000000 |
WA-TN | -174.733333 | -228.24816 | -121.218506 | 0.0000000 |
132-130 | -80.522222 | -163.73650 | 2.692059 | 0.0617624 |
272-130 | -55.333333 | -144.29314 | 33.626476 | 0.3939450 |
55-130 | -59.238889 | -142.45317 | 23.975393 | 0.2641783 |
WT-130 | -34.455556 | -111.49701 | 42.585899 | 0.6990368 |
272-132 | 25.188889 | -58.02539 | 108.403171 | 0.9047050 |
55-132 | 21.283333 | -55.75812 | 98.324788 | 0.9296912 |
WT-132 | 46.066667 | -24.26224 | 116.395571 | 0.3427999 |
55-272 | -3.905556 | -87.11984 | 79.308726 | 0.9999201 |
WT-272 | 20.877778 | -56.16368 | 97.919232 | 0.9341341 |
WT-55 | 24.783333 | -45.54557 | 95.112238 | 0.8459852 |
#The below two lines generate plots to evaluate regression assumptions.
par(mfrow=c(2,2))
plot(ds.anova.add.rich)
#There was no significant interaction between state and clone and thus we drop the interaction term.
ds.anova.sing.rich<-aov((Richness)~State, data=ds.richnesstabmet)
ds.sing.aov.rich<-Anova(ds.anova.sing.rich,type="III")
ds.sing.aov.rich
## Anova Table (Type III tests)
##
## Response: (Richness)
## Sum Sq Df F value Pr(>F)
## (Intercept) 3855735 1 1185.54 < 2.2e-16 ***
## State 862382 2 132.58 < 2.2e-16 ***
## Residuals 120335 37
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Sum Sq | Df | F value | Pr(>F) | |
---|---|---|---|---|
(Intercept) | 3855735.0 | 1 | 1185.5426 | 0 |
State | 862382.0 | 2 | 132.5805 | 0 |
Residuals | 120334.9 | 37 | NA | NA |
#Perform Tukey test
ds.anova.sing.rich.tukey<-TukeyHSD(ds.anova.sing.rich)
ds.anova.sing.rich.tukey.table<-rbind(ds.anova.sing.rich.tukey$State)
ds.anova.sing.rich.tukey.table
## diff lwr upr p adj
## TN-IN -199.2667 -250.1082 -148.4252 4.465317e-11
## WA-IN -374.0000 -430.8425 -317.1575 0.000000e+00
## WA-TN -174.7333 -231.5759 -117.8908 1.810716e-08
diff | lwr | upr | p adj | |
---|---|---|---|---|
TN-IN | -199.2667 | -250.1082 | -148.4252 | 0 |
WA-IN | -374.0000 | -430.8425 | -317.1575 | 0 |
WA-TN | -174.7333 | -231.5759 | -117.8908 | 0 |
#The below two lines generate plots to evaluate regression assumptions.
par(mfrow=c(2,2))
plot(ds.anova.sing.rich)
#I then create a box plot for the richness data by state using ggplot.
library(Hmisc)
library(ggpubr)
ds.richness.summarized<-summarize(ds.richnesstabmet$Richness,by=ds.richnesstabmet$State, FUN=max)
ds.richness.summarized<-data.frame(State=ds.richness.summarized$`ds.richnesstabmet$State`,Richness=ds.richness.summarized$`ds.richnesstabmet$Richness`)
library(ggplot2)
library(ggpubr)
#Below I create a boxplot for richness values.
ds.rich<-ggboxplot(ds.richnesstabmet, x="State", y="Richness", outlier.shape=NA)+
geom_jitter(data=ds.richnesstabmet,position=position_jitter(0.2), aes(shape=clone),size=3)+
scale_shape_manual(values=c(16,10,8,7,0,2))+
#geom_text(data=richness.summarized, aes(x=State, y = 25 + Richness, label=Group, fontface="bold"))+
#scale_fill_manual(values=c("#006600","#3399FF","#FF9900"))+
geom_text(data=NULL,aes(x=1, y=620, label="A"))+
geom_text(data=NULL,aes(x=2, y=425, label="B"))+
geom_text(data=NULL,aes(x=3, y=185, label="C"))+
geom_text(data=NULL,aes(x=0.5, y=710, label="Caulosphere: 16S"),hjust=0,colour="black")+
theme(axis.line.x=element_blank(),
axis.text.x=element_blank(),
axis.title.x=element_blank(),
axis.ticks.x=element_blank(),
axis.text=element_text(),
axis.title=element_text())
ds.rich
Diversity
Shannon diversity is first calculated for each sample. Then due to the unbalanced nature of our study design, we use a type 3 ANOVA.
#In this chunk we calculate shannon diversity and create a data frame including diversity with metadata
#I first import my rarefied OTU table that contains singletons.
ds.rareotu.wsingles<-read.table("Mothur_output/bark16sotutable.rarefied_jnigra17_fa19_ajo.shared", header=TRUE, sep="\t")
#Calculate shannon diversity using the diversity function of vegan
library(vegan)
ds.bac.div<-diversity (ds.rareotu.wsingles, index="shannon")
#I then create a new data frame to include sample metadata.
ds.diversity.tabmet<-data.frame(State=ds.met.rare$State, clone=ds.met.rare$Clone, sample=ds.met.rare$Group,Shannon=ds.bac.div)
#I first test for a significant interaction between state and clone. Due to the unbalanced design we use a type 3 ANOVA.
library(car)
ds.anova.typ3.div<-aov((Shannon)~State*clone, data=ds.diversity.tabmet)
ds.typ3aov.div<-Anova(ds.anova.typ3.div,type="III")
ds.typ3aov.div
## Anova Table (Type III tests)
##
## Response: (Shannon)
## Sum Sq Df F value Pr(>F)
## (Intercept) 98.188 1 417.1432 < 2.2e-16 ***
## State 3.334 2 7.0829 0.003655 **
## clone 1.389 4 1.4748 0.239692
## State:clone 1.761 8 0.9351 0.505802
## Residuals 5.885 25
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Sum Sq | Df | F value | Pr(>F) | |
---|---|---|---|---|
(Intercept) | 98.188131 | 1 | 417.1432002 | 0.0000000 |
State | 3.334387 | 2 | 7.0829177 | 0.0036552 |
clone | 1.388572 | 4 | 1.4748048 | 0.2396924 |
State:clone | 1.760811 | 8 | 0.9350801 | 0.5058024 |
Residuals | 5.884558 | 25 | NA | NA |
#The below two lines generate plots to evaluate regression assumptions.
par(mfrow=c(2,2))
plot(ds.anova.typ3.div)
## Warning: not plotting observations with leverage one:
## 31, 37
## Warning: not plotting observations with leverage one:
## 31, 37
#There was no significant interaction between state and clone.
ds.anova.add.div<-aov((Shannon)~State+clone, data=ds.diversity.tabmet)
ds.add.aov.div<-Anova(ds.anova.add.div,type="III")
ds.add.aov.div
## Anova Table (Type III tests)
##
## Response: (Shannon)
## Sum Sq Df F value Pr(>F)
## (Intercept) 163.975 1 707.774 < 2.2e-16 ***
## State 14.988 2 32.346 1.67e-08 ***
## clone 0.940 4 1.014 0.4144
## Residuals 7.645 33
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Sum Sq | Df | F value | Pr(>F) | |
---|---|---|---|---|
(Intercept) | 163.9754567 | 1 | 707.773621 | 0.0000000 |
State | 14.9876614 | 2 | 32.345912 | 0.0000000 |
clone | 0.9397214 | 4 | 1.014039 | 0.4143667 |
Residuals | 7.6453684 | 33 | NA | NA |
#Perform a tukey test
ds.anova.add.div.tukey<-TukeyHSD(ds.anova.add.div)
ds.anova.add.div.tukey.table<-rbind(ds.anova.add.div.tukey$State,ds.anova.add.div.tukey$clone)
ds.anova.add.div.tukey.table
## diff lwr upr p adj
## TN-IN -0.76611458 -1.1973851 -0.3348440 3.457302e-04
## WA-IN -1.64344537 -2.1256205 -1.1612702 3.455168e-09
## WA-TN -0.87733079 -1.3595059 -0.3951557 2.550644e-04
## 132-130 -0.41748779 -1.1672586 0.3322830 5.041972e-01
## 272-130 -0.46003644 -1.2615752 0.3415023 4.742929e-01
## 55-130 -0.32143379 -1.0712046 0.4283370 7.304514e-01
## WT-130 -0.43106656 -1.1252195 0.2630863 3.955623e-01
## 272-132 -0.04254865 -0.7923195 0.7072222 9.998299e-01
## 55-132 0.09605401 -0.5980989 0.7902069 9.943859e-01
## WT-132 -0.01357877 -0.6472508 0.6200932 9.999965e-01
## 55-272 0.13860265 -0.6111682 0.8883735 9.832227e-01
## WT-272 0.02896988 -0.6651830 0.7231228 9.999499e-01
## WT-55 -0.10963277 -0.7433048 0.5240392 9.868953e-01
diff | lwr | upr | p adj | |
---|---|---|---|---|
TN-IN | -0.7661146 | -1.1973851 | -0.3348440 | 0.0003457 |
WA-IN | -1.6434454 | -2.1256205 | -1.1612702 | 0.0000000 |
WA-TN | -0.8773308 | -1.3595059 | -0.3951557 | 0.0002551 |
132-130 | -0.4174878 | -1.1672586 | 0.3322830 | 0.5041972 |
272-130 | -0.4600364 | -1.2615752 | 0.3415023 | 0.4742929 |
55-130 | -0.3214338 | -1.0712046 | 0.4283370 | 0.7304514 |
WT-130 | -0.4310666 | -1.1252195 | 0.2630863 | 0.3955623 |
272-132 | -0.0425486 | -0.7923195 | 0.7072222 | 0.9998299 |
55-132 | 0.0960540 | -0.5980989 | 0.7902069 | 0.9943859 |
WT-132 | -0.0135788 | -0.6472508 | 0.6200932 | 0.9999965 |
55-272 | 0.1386027 | -0.6111682 | 0.8883735 | 0.9832227 |
WT-272 | 0.0289699 | -0.6651830 | 0.7231228 | 0.9999499 |
WT-55 | -0.1096328 | -0.7433048 | 0.5240392 | 0.9868953 |
#The below two lines generate plots to evaluate regression assumptions.
par(mfrow=c(2,2))
plot(ds.anova.add.div)
#There was no significant interaction between state and clone.
ds.anova.sing.div<-aov((Shannon)~State, data=ds.diversity.tabmet)
ds.sing.aov.div<-Anova(ds.anova.sing.div,type="III")
ds.sing.aov.div
## Anova Table (Type III tests)
##
## Response: (Shannon)
## Sum Sq Df F value Pr(>F)
## (Intercept) 424.51 1 1829.56 < 2.2e-16 ***
## State 16.32 2 35.16 2.781e-09 ***
## Residuals 8.59 37
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Sum Sq | Df | F value | Pr(>F) | |
---|---|---|---|---|
(Intercept) | 424.51279 | 1 | 1829.56423 | 0 |
State | 16.31632 | 2 | 35.16002 | 0 |
Residuals | 8.58509 | 37 | NA | NA |
#Perform a Tukey test
ds.anova.sing.div.tukey<-TukeyHSD(ds.anova.sing.div)
ds.anova.sing.div.tukey.table<-rbind(ds.anova.sing.div.tukey$State,ds.anova.sing.div.tukey$clone)
ds.anova.sing.div.tukey.table
## diff lwr upr p adj
## TN-IN -0.7661146 -1.195547 -0.3366820 2.919164e-04
## WA-IN -1.6434454 -2.123566 -1.1633251 1.431986e-09
## WA-TN -0.8773308 -1.357451 -0.3972105 2.126550e-04
diff | lwr | upr | p adj | |
---|---|---|---|---|
TN-IN | -0.7661146 | -1.195547 | -0.3366820 | 0.0002919 |
WA-IN | -1.6434454 | -2.123566 | -1.1633251 | 0.0000000 |
WA-TN | -0.8773308 | -1.357451 | -0.3972105 | 0.0002127 |
#The below two lines generate plots to evaluate regression assumptions.
par(mfrow=c(2,2))
plot(ds.anova.sing.div)
#I then create a box plot for the richness data by state using ggplot.
library(Hmisc)
library(ggpubr)
ds.diversity.summarized<-summarize(ds.diversity.tabmet$Shannon,by=ds.diversity.tabmet$State, FUN=max)
ds.diversity.summarized<-data.frame(State=ds.diversity.summarized$`ds.diversity.tabmet$State`,Diversity=ds.diversity.summarized$`ds.diversity.tabmet$Shannon`)
library(ggplot2)
library(ggpubr)
#Below I create a boxplot for richness values.
ds.div<-ggboxplot(ds.diversity.tabmet, x="State", y="Shannon", outlier.shape=NA)+
geom_jitter(data=ds.diversity.tabmet,position=position_jitter(0.2), aes(shape=clone),size=3)+
scale_shape_manual(values=c(16,10,8,7,0,2))+
#geom_text(data=diversity.summarized, aes(x=State, y = 0.5 + Diversity, label=group, fontface="bold"))+
#scale_fill_manual(values=c("#006600","#3399FF","#FF9900"))+
geom_text(data=NULL,aes(x=1, y=6.3, label="A"))+
geom_text(data=NULL,aes(x=2, y=5.5, label="B"))+
geom_text(data=NULL,aes(x=3, y=4.4, label="C"))+
geom_text(data=NULL,aes(x=0.5, y=7, label="Caulosphere: 16S"),hjust=0)+
scale_y_continuous(breaks=c(3,4,5,6),limits=c(2,7)) +
theme(axis.line.x=element_blank(),
axis.text.x=element_blank(),
axis.title.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_text(),
axis.text.y=element_text())
ds.div
Renaming of OTUs
OTUs are then renamed. Prior to official renaming, taxonomy strings are cleaned so that assignment confidence values and taxon leaders and any _unclassifed tails are removed.
#Here I am renaming the OTUs using the make.names function. This will make the OTU name something more informative. I am using genus to do this.
t.ds.rareotutabtaxsep$genus<-sub("\\(.*)","",x=t.ds.rareotutabtaxsep$genus)
t.ds.rareotutabtaxsep$genus<-sub("(_unclassified)","",x=t.ds.rareotutabtaxsep$genus)
t.ds.rareotutabtaxsep$genus<-sub("_ge","",x=t.ds.rareotutabtaxsep$genus)
rownames(t.ds.rareotutabtaxsep)<-make.names(paste(rownames(t.ds.rareotutabtaxsep),t.ds.rareotutabtaxsep$genus,sep="_"))
t.ds.rareotutabtax.rename<-t.ds.rareotutabtaxsep[,7:46]
ds.rareotutabtax.rename<-as.data.frame(t(t.ds.rareotutabtax.rename))
library(indicspecies)
set.seed(577)
indicspecies.bac.ds<-multipatt(ds.rareotutabtax.rename, ds.met.rare$State,func="IndVal.g",control=how(nperm=10000))
summary(indicspecies.bac.ds,indvalcomp=TRUE)
##
## Multilevel pattern analysis
## ---------------------------
##
## Association function: IndVal.g
## Significance level (alpha): 0.05
##
## Total number of species: 1775
## Selected number of species: 546
## Number of species associated to 1 group: 373
## Number of species associated to 2 groups: 173
##
## List of species associated to each combination:
##
## Group IN #sps. 249
## A
## Otu0121_Terrimonas_Terrimonas 0.9823
## Otu0145_uncultured_uncultured 0.9670
## Otu0136_Flavisolibacter_Flavisolibacter 0.9630
## Otu0212_Spirosoma_Spirosoma 1.0000
## Otu0187_uncultured_uncultured 0.9265
## Otu0252_Armatimonadales_ge_Armatimonadales 0.9615
## Otu0209_Spirosoma_Spirosoma 0.9524
## Otu0162_Subgroup_6_ge_Subgroup_6 0.9242
## Otu0172_Spirosomaceae_Spirosomaceae 0.9211
## Otu0109_Spirosoma_Spirosoma 0.8293
## Otu0144_67.14_ge_67.14 0.9545
## Otu0064_Ferruginibacter_Ferruginibacter 0.8232
## Otu0034_Pseudonocardia_Pseudonocardia 0.9379
## Otu0411_Rhizobiaceae_Rhizobiaceae 0.9333
## Otu0117_Cryptosporangium_Cryptosporangium 0.9304
## Otu0167_Spirosomaceae_Spirosomaceae 0.8587
## Otu0272_Beijerinckiaceae_Beijerinckiaceae 1.0000
## Otu0238_Chthoniobacter_Chthoniobacter 0.7846
## Otu0258_Acetobacteraceae_Acetobacteraceae 0.8400
## Otu0108_Chitinophagaceae_Chitinophagaceae 0.7787
## Otu0054_Geodermatophilus_Geodermatophilus 0.7749
## Otu0281_Hymenobacter_Hymenobacter 0.8837
## Otu0113_Kineosporia_Kineosporia 0.8166
## Otu0299_R7C24_ge_R7C24 0.9412
## Otu0203_Devosia_Devosia 0.8060
## Otu0312_Caulobacter_Caulobacter 0.9268
## Otu0152_Spirosoma_Spirosoma 0.9245
## Otu0129_Spirosomaceae_Spirosomaceae 0.9859
## Otu0171_Sphingomonas_Sphingomonas 0.8342
## Otu0232_Chthoniobacter_Chthoniobacter 0.8958
## Otu0135_JG30.KF.CM45_ge_JG30.KF.CM45 0.8197
## Otu0374_Flavobacterium_Flavobacterium 0.9643
## Otu0179_Sphingomonadaceae_Sphingomonadaceae 0.7500
## Otu0176_Methylobacterium_Methylobacterium 0.8730
## Otu0410_Acetobacteraceae_Acetobacteraceae 0.9524
## Otu0352_Chthoniobacter_Chthoniobacter 0.8718
## Otu0243_Chthoniobacter_Chthoniobacter 0.7925
## Otu0277_Spirosoma_Spirosoma 0.9219
## Otu0296_Fimbriiglobus_Fimbriiglobus 0.7234
## Otu0354_Chthoniobacter_Chthoniobacter 0.8438
## Otu0301_Xanthobacteraceae_Xanthobacteraceae 1.0000
## Otu0303_Spirosoma_Spirosoma 1.0000
## Otu0441_Mucilaginibacter_Mucilaginibacter 1.0000
## Otu0681_Phenylobacterium_Phenylobacterium 1.0000
## Otu0223_Haliangium_Haliangium 0.8909
## Otu0262_Spirosoma_Spirosoma 0.9714
## Otu0235_Blastocatella_Blastocatella 0.8800
## Otu0335_Chitinophagaceae_Chitinophagaceae 0.9412
## Otu0717_Aureimonas_Aureimonas 0.9375
## Otu0360_Singulisphaera_Singulisphaera 0.9231
## Otu0271_Nocardioides_Nocardioides 0.9231
## Otu0204_Microvirga_Microvirga 0.8378
## Otu0154_Mycobacterium_Mycobacterium 0.8375
## Otu0208_Myxococcales_Myxococcales 0.7674
## Otu0405_Mucilaginibacter_Mucilaginibacter 0.9167
## Otu0284_Rhizobiaceae_Rhizobiaceae 0.8298
## Otu0364_Chitinophagaceae_Chitinophagaceae 0.9048
## Otu0213_Dactylosporangium_Dactylosporangium 0.9000
## Otu0218_Nocardioides_Nocardioides 0.9000
## Otu0455_Ferruginibacter_Ferruginibacter 1.0000
## Otu0462_Beijerinckiaceae_Beijerinckiaceae 1.0000
## Otu0493_Chthoniobacter_Chthoniobacter 1.0000
## Otu0539_Segetibacter_Segetibacter 1.0000
## Otu0569_Saccharimonadales_ge_Saccharimonadales 1.0000
## Otu0606_Candidatus_Alysiosphaera_Candidatus_Alysiosphaera 1.0000
## Otu0412_Deinococcus_Deinococcus 0.8095
## Otu0408_Gemmatimonas_Gemmatimonas 0.8077
## Otu0464_Cytophagales_Cytophagales 0.8077
## Otu0221_Archangiaceae_Archangiaceae 0.7273
## Otu0297_67.14_ge_67.14 0.7917
## Otu0382_Fimbriimonadaceae_Fimbriimonadaceae 0.9630
## Otu0293_Chthoniobacter_Chthoniobacter 0.7872
## Otu0369_Larkinella_Larkinella 0.8636
## Otu0420_Chitinophagaceae_Chitinophagaceae 0.9565
## Otu0343_Truepera_Truepera 0.8529
## Otu0549_Acetobacteraceae_Acetobacteraceae 0.9474
## Otu0733_AKIW781_ge_AKIW781 0.9444
## Otu0275_Actinoplanes_Actinoplanes 0.7660
## Otu0157_Segetibacter_Segetibacter 0.7476
## Otu0289_uncultured_uncultured 0.9062
## Otu0519_Chthoniobacter_Chthoniobacter 0.8125
## Otu0183_Polyangiaceae_Polyangiaceae 0.8041
## Otu0371_uncultured_uncultured 1.0000
## Otu0435_Rhizobiales_Rhizobiales 1.0000
## Otu0444_Chthoniobacter_Chthoniobacter 1.0000
## Otu0457_Psychroglaciecola_Psychroglaciecola 1.0000
## Otu0492_Gemmata_Gemmata 1.0000
## Otu0507_Dyadobacter_Dyadobacter 1.0000
## Otu0567_Blastocatellaceae_Blastocatellaceae 0.8000
## Otu0575_Gemmatirosa_Gemmatirosa 1.0000
## Otu0349_67.14_ge_67.14 0.7838
## Otu0491_uncultured_uncultured 0.8571
## Otu0511_Chthoniobacter_Chthoniobacter 0.8571
## Otu0116_Acetobacteraceae_Acetobacteraceae 0.7681
## Otu0415_Mucilaginibacter_Mucilaginibacter 0.9545
## Otu0091_Cellulomonadaceae_Cellulomonadaceae 0.9486
## Otu0260_Gemmatirosa_Gemmatirosa 0.9459
## Otu0421_Verrucomicrobiae_Verrucomicrobiae 0.9429
## Otu0426_Acetobacteraceae_Acetobacteraceae 0.9412
## Otu0674_Fimbriimonadaceae_ge_Fimbriimonadaceae 0.9375
## Otu0673_Gaiellales_Gaiellales 0.8235
## Otu0140_Candidatus_Uzinura_Candidatus_Uzinura 0.9252
## Otu0695_Burkholderiaceae_Burkholderiaceae 0.9231
## Otu0329_Chloroflexi_Chloroflexi 0.9167
## Otu0409_Ferruginibacter_Ferruginibacter 0.8056
## Otu0577_Constrictibacter_Constrictibacter 0.9000
## Otu0266_Rhodobacteraceae_Rhodobacteraceae 0.7941
## Otu0256_Chitinophaga_Chitinophaga 0.8913
## Otu0425_uncultured_uncultured 0.7917
## Otu0510_FBP_ge_FBP 0.7879
## Otu0247_Spirosomaceae_Spirosomaceae 1.0000
## Otu0295_Armatimonadales_ge_Armatimonadales 1.0000
## Otu0363_Acidiphilium_Acidiphilium 1.0000
## Otu0400_Actinoplanes_Actinoplanes 1.0000
## Otu0494_Spirosoma_Spirosoma 1.0000
## Otu0583_R7C24_ge_R7C24 1.0000
## Otu0589_Rhizorhapis_Rhizorhapis 1.0000
## Otu0639_Spirosomaceae_Spirosomaceae 1.0000
## Otu0640_WD2101_soil_group_ge_WD2101_soil_group 0.8750
## Otu0749_Marmoricola_Marmoricola 1.0000
## Otu0913_Haliangium_Haliangium 1.0000
## Otu0250_Oligoflexus_Oligoflexus 0.8696
## Otu0174_Polyangium_Polyangium 0.8462
## Otu0592_Chthoniobacter_Chthoniobacter 0.7500
## Otu0413_Hymenobacter_Hymenobacter 0.9630
## Otu0517_uncultured_ge_uncultured 0.9444
## Otu0389_Bryobacter_Bryobacter 0.8235
## Otu0502_Hymenobacter_Hymenobacter 0.9412
## Otu0099_Xanthomonas_Xanthomonas 0.9333
## Otu0239_Archangiaceae_Archangiaceae 0.7237
## Otu0404_Solirubrobacteraceae_Solirubrobacteraceae 0.6500
## Otu0537_Segetibacter_Segetibacter 0.7200
## Otu0641_Acidobacteriaceae__Acidobacteriaceae_ 0.9167
## Otu0679_Tepidisphaerales_Tepidisphaerales 0.9167
## Otu0703_Bacteroidia_Bacteroidia 0.9167
## Otu0308_Oxyphotobacteria_Oxyphotobacteria 0.8000
## Otu0576_JG30.KF.CM45_ge_JG30.KF.CM45 0.7895
## Otu0657_uncultured_ge_uncultured 0.9000
## Otu0333_Nocardioides_Nocardioides 0.7805
## Otu0667_Fimbriiglobus_Fimbriiglobus 0.8889
## Otu0800_Sericytochromatia_ge_Sericytochromatia 0.8889
## Otu0336_Chitinophagaceae_Chitinophagaceae 0.6176
## Otu0448_Devosiaceae_Devosiaceae 0.8649
## Otu0251_Rhizorhapis_Rhizorhapis 1.0000
## Otu0346_Chloroflexi_Chloroflexi 1.0000
## Otu0531_Alphaproteobacteria_Alphaproteobacteria 1.0000
## Otu0568_uncultured_uncultured 0.8571
## Otu0593_D05.2_ge_D05.2 0.8571
## Otu0594_Saccharimonadales_ge_Saccharimonadales 1.0000
## Otu0652_Tepidisphaerales_Tepidisphaerales 1.0000
## Otu0699_Sphingomonadaceae_Sphingomonadaceae 1.0000
## Otu0805_Acetobacteraceae_Acetobacteraceae 1.0000
## Otu0815_Chthoniobacter_Chthoniobacter 1.0000
## Otu0878_Sphingobacteriaceae_Sphingobacteriaceae 1.0000
## Otu0908_C0119_ge_C0119 1.0000
## Otu0914_Armatimonadales_ge_Armatimonadales 1.0000
## Otu1019_uncultured_uncultured 1.0000
## Otu0241_Burkholderia.Caballeronia.Paraburkholderia_Burkholderia.Caballeronia.Paraburkholderia 0.8519
## Otu0477_Saccharimonadales_ge_Saccharimonadales 0.8333
## Otu0748_Chthonomonas_Chthonomonas 0.8333
## Otu0439_Spirosoma_Spirosoma 0.9630
## Otu0370_uncultured_ge_uncultured 0.8235
## Otu0521_JG30.KF.CM45_ge_JG30.KF.CM45 0.8125
## Otu0242_Rickettsiales_Rickettsiales 0.8043
## Otu0188_Flavobacterium_Flavobacterium 0.8000
## Otu0643_Saccharimonadales_ge_Saccharimonadales 0.9231
## Otu0427_Solirubrobacterales_Solirubrobacterales 0.9091
## Otu0201_uncultured_uncultured 0.6769
## Otu0614_WD2101_soil_group_ge_WD2101_soil_group 0.9000
## Otu0804_Pajaroellobacter_Pajaroellobacter 0.9000
## Otu0557_Acetobacteraceae_Acetobacteraceae 0.7692
## Otu0398_Frankiales_Frankiales 0.6667
## Otu0536_Actinoplanes_Actinoplanes 0.8889
## Otu0617_1174.901.12_1174.901.12 0.7619
## Otu0402_Nocardioides_Nocardioides 0.7419
## Otu0627_Chthoniobacter_Chthoniobacter 0.8571
## Otu0669_WD2101_soil_group_ge_WD2101_soil_group 0.8571
## Otu0967_Hymenobacter_Hymenobacter 0.8571
## Otu0473_Ancylobacter_Ancylobacter 1.0000
## Otu0619_Sphingomonas_Sphingomonas 1.0000
## Otu0636_Chitinophagaceae_Chitinophagaceae 1.0000
## Otu0658_Chloroflexaceae_Chloroflexaceae 1.0000
## Otu0715_Saccharimonadales_ge_Saccharimonadales 1.0000
## Otu0763_Kineosporiaceae_Kineosporiaceae 1.0000
## Otu0797_Chitinophagaceae_Chitinophagaceae 1.0000
## Otu0842_Acetobacteraceae_Acetobacteraceae 1.0000
## Otu0847_WD2101_soil_group_ge_WD2101_soil_group 1.0000
## Otu0875_Armatimonadales_ge_Armatimonadales 1.0000
## Otu0892_Aetherobacter_Aetherobacter 1.0000
## Otu0898_Isosphaeraceae_Isosphaeraceae 1.0000
## Otu1094_Solirubrobacteraceae_Solirubrobacteraceae 1.0000
## Otu1220_Roseomonas_Roseomonas 1.0000
## Otu1290_Parafilimonas_Parafilimonas 1.0000
## Otu0601_Mucilaginibacter_Mucilaginibacter 0.8000
## Otu0685_Propionibacteriaceae_Propionibacteriaceae 0.8000
## Otu0538_JCM_18997_JCM_18997 0.7692
## Otu0618_Fibrella_Fibrella 0.9000
## Otu0596_Chloroflexi_Chloroflexi 0.8889
## Otu0745_Hymenobacter_Hymenobacter 0.8889
## Otu0463_Rubellimicrobium_Rubellimicrobium 0.8696
## Otu0367_Gemmatirosa_Gemmatirosa 0.8333
## Otu0532_Geminicoccus_Geminicoccus 0.8235
## Otu0280_Saccharimonadales_ge_Saccharimonadales 1.0000
## Otu0452_Acetobacteraceae_Acetobacteraceae 1.0000
## Otu0453_Candidatus_Udaeobacter_Candidatus_Udaeobacter 1.0000
## Otu0495_Nostoc_PCC.73102_Nostoc_PCC.73102 1.0000
## Otu0496_Subgroup_6_ge_Subgroup_6 1.0000
## Otu0547_Nocardioides_Nocardioides 1.0000
## Otu0637_BIrii41_ge_BIrii41 1.0000
## Otu0650_Acetobacteraceae_Acetobacteraceae 1.0000
## Otu0707_Fimbriimonadaceae_ge_Fimbriimonadaceae 1.0000
## Otu0726_Bacteroidia_Bacteroidia 1.0000
## Otu0756_uncultured_uncultured 1.0000
## Otu0787_Steroidobacter_Steroidobacter 1.0000
## Otu0789_Alphaproteobacteria_Alphaproteobacteria 1.0000
## Otu0798_Pajaroellobacter_Pajaroellobacter 1.0000
## Otu0802_Spirosoma_Spirosoma 1.0000
## Otu0823_Sphingobacteriaceae_Sphingobacteriaceae 1.0000
## Otu0824_Sphingomonadaceae_Sphingomonadaceae 1.0000
## Otu0846_Ferruginibacter_Ferruginibacter 1.0000
## Otu0873_Agaricicola_Agaricicola 1.0000
## Otu0885_WD2101_soil_group_ge_WD2101_soil_group 1.0000
## Otu0901_Spirosoma_Spirosoma 1.0000
## Otu0932_Armatimonadales_ge_Armatimonadales 1.0000
## Otu0948_WD2101_soil_group_ge_WD2101_soil_group 1.0000
## Otu0950_Flavobacterium_Flavobacterium 1.0000
## Otu0963_Verrucomicrobiae_Verrucomicrobiae 1.0000
## Otu0966_Acetobacteraceae_Acetobacteraceae 1.0000
## Otu0987_Chloroflexi_Chloroflexi 1.0000
## Otu1006_Pajaroellobacter_Pajaroellobacter 1.0000
## Otu1012_Psychroglaciecola_Psychroglaciecola 1.0000
## Otu1059_Devosia_Devosia 1.0000
## Otu1072_Acidobacteriaceae__Acidobacteriaceae_ 1.0000
## Otu1080_Acidibacter_Acidibacter 1.0000
## Otu1084_RBG.13.54.9_ge_RBG.13.54.9 1.0000
## Otu1109_Xanthobacteraceae_Xanthobacteraceae 1.0000
## Otu1139_Rhodovastum_Rhodovastum 1.0000
## Otu1245_Thermoleophilia_Thermoleophilia 1.0000
## Otu1246_Isosphaeraceae_Isosphaeraceae 1.0000
## Otu1247_Spirosoma_Spirosoma 1.0000
## Otu1249_Hymenobacter_Hymenobacter 1.0000
## Otu1256_Gemmata_Gemmata 1.0000
## Otu1258_Tepidisphaerales_Tepidisphaerales 1.0000
## Otu1311_Kaistia_Kaistia 1.0000
## Otu1398_Hymenobacter_Hymenobacter 1.0000
## Otu1403_Chitinophagaceae_Chitinophagaceae 1.0000
## Otu1442_Sphingobacteriaceae_Sphingobacteriaceae 1.0000
## Otu1567_Pajaroellobacter_Pajaroellobacter 1.0000
## Otu1603_Chitinophagaceae_Chitinophagaceae 1.0000
## B
## Otu0121_Terrimonas_Terrimonas 1.0000
## Otu0145_uncultured_uncultured 1.0000
## Otu0136_Flavisolibacter_Flavisolibacter 1.0000
## Otu0212_Spirosoma_Spirosoma 0.9333
## Otu0187_uncultured_uncultured 1.0000
## Otu0252_Armatimonadales_ge_Armatimonadales 0.9333
## Otu0209_Spirosoma_Spirosoma 0.9333
## Otu0162_Subgroup_6_ge_Subgroup_6 0.9333
## Otu0172_Spirosomaceae_Spirosomaceae 0.9333
## Otu0109_Spirosoma_Spirosoma 1.0000
## Otu0144_67.14_ge_67.14 0.8667
## Otu0064_Ferruginibacter_Ferruginibacter 1.0000
## Otu0034_Pseudonocardia_Pseudonocardia 0.8667
## Otu0411_Rhizobiaceae_Rhizobiaceae 0.8667
## Otu0117_Cryptosporangium_Cryptosporangium 0.8667
## Otu0167_Spirosomaceae_Spirosomaceae 0.9333
## Otu0272_Beijerinckiaceae_Beijerinckiaceae 0.8000
## Otu0238_Chthoniobacter_Chthoniobacter 1.0000
## Otu0258_Acetobacteraceae_Acetobacteraceae 0.9333
## Otu0108_Chitinophagaceae_Chitinophagaceae 1.0000
## Otu0054_Geodermatophilus_Geodermatophilus 1.0000
## Otu0281_Hymenobacter_Hymenobacter 0.8667
## Otu0113_Kineosporia_Kineosporia 0.9333
## Otu0299_R7C24_ge_R7C24 0.8000
## Otu0203_Devosia_Devosia 0.9333
## Otu0312_Caulobacter_Caulobacter 0.8000
## Otu0152_Spirosoma_Spirosoma 0.8000
## Otu0129_Spirosomaceae_Spirosomaceae 0.7333
## Otu0171_Sphingomonas_Sphingomonas 0.8667
## Otu0232_Chthoniobacter_Chthoniobacter 0.8000
## Otu0135_JG30.KF.CM45_ge_JG30.KF.CM45 0.8667
## Otu0374_Flavobacterium_Flavobacterium 0.7333
## Otu0179_Sphingomonadaceae_Sphingomonadaceae 0.9333
## Otu0176_Methylobacterium_Methylobacterium 0.8000
## Otu0410_Acetobacteraceae_Acetobacteraceae 0.7333
## Otu0352_Chthoniobacter_Chthoniobacter 0.8000
## Otu0243_Chthoniobacter_Chthoniobacter 0.8667
## Otu0277_Spirosoma_Spirosoma 0.7333
## Otu0296_Fimbriiglobus_Fimbriiglobus 0.9333
## Otu0354_Chthoniobacter_Chthoniobacter 0.8000
## Otu0301_Xanthobacteraceae_Xanthobacteraceae 0.6667
## Otu0303_Spirosoma_Spirosoma 0.6667
## Otu0441_Mucilaginibacter_Mucilaginibacter 0.6667
## Otu0681_Phenylobacterium_Phenylobacterium 0.6667
## Otu0223_Haliangium_Haliangium 0.7333
## Otu0262_Spirosoma_Spirosoma 0.6667
## Otu0235_Blastocatella_Blastocatella 0.7333
## Otu0335_Chitinophagaceae_Chitinophagaceae 0.6667
## Otu0717_Aureimonas_Aureimonas 0.6667
## Otu0360_Singulisphaera_Singulisphaera 0.6667
## Otu0271_Nocardioides_Nocardioides 0.6667
## Otu0204_Microvirga_Microvirga 0.7333
## Otu0154_Mycobacterium_Mycobacterium 0.7333
## Otu0208_Myxococcales_Myxococcales 0.8000
## Otu0405_Mucilaginibacter_Mucilaginibacter 0.6667
## Otu0284_Rhizobiaceae_Rhizobiaceae 0.7333
## Otu0364_Chitinophagaceae_Chitinophagaceae 0.6667
## Otu0213_Dactylosporangium_Dactylosporangium 0.6667
## Otu0218_Nocardioides_Nocardioides 0.6667
## Otu0455_Ferruginibacter_Ferruginibacter 0.6000
## Otu0462_Beijerinckiaceae_Beijerinckiaceae 0.6000
## Otu0493_Chthoniobacter_Chthoniobacter 0.6000
## Otu0539_Segetibacter_Segetibacter 0.6000
## Otu0569_Saccharimonadales_ge_Saccharimonadales 0.6000
## Otu0606_Candidatus_Alysiosphaera_Candidatus_Alysiosphaera 0.6000
## Otu0412_Deinococcus_Deinococcus 0.7333
## Otu0408_Gemmatimonas_Gemmatimonas 0.7333
## Otu0464_Cytophagales_Cytophagales 0.7333
## Otu0221_Archangiaceae_Archangiaceae 0.8000
## Otu0297_67.14_ge_67.14 0.7333
## Otu0382_Fimbriimonadaceae_Fimbriimonadaceae 0.6000
## Otu0293_Chthoniobacter_Chthoniobacter 0.7333
## Otu0369_Larkinella_Larkinella 0.6667
## Otu0420_Chitinophagaceae_Chitinophagaceae 0.6000
## Otu0343_Truepera_Truepera 0.6667
## Otu0549_Acetobacteraceae_Acetobacteraceae 0.6000
## Otu0733_AKIW781_ge_AKIW781 0.6000
## Otu0275_Actinoplanes_Actinoplanes 0.7333
## Otu0157_Segetibacter_Segetibacter 0.7333
## Otu0289_uncultured_uncultured 0.6000
## Otu0519_Chthoniobacter_Chthoniobacter 0.6667
## Otu0183_Polyangiaceae_Polyangiaceae 0.6667
## Otu0371_uncultured_uncultured 0.5333
## Otu0435_Rhizobiales_Rhizobiales 0.5333
## Otu0444_Chthoniobacter_Chthoniobacter 0.5333
## Otu0457_Psychroglaciecola_Psychroglaciecola 0.5333
## Otu0492_Gemmata_Gemmata 0.5333
## Otu0507_Dyadobacter_Dyadobacter 0.5333
## Otu0567_Blastocatellaceae_Blastocatellaceae 0.6667
## Otu0575_Gemmatirosa_Gemmatirosa 0.5333
## Otu0349_67.14_ge_67.14 0.6667
## Otu0491_uncultured_uncultured 0.6000
## Otu0511_Chthoniobacter_Chthoniobacter 0.6000
## Otu0116_Acetobacteraceae_Acetobacteraceae 0.6667
## Otu0415_Mucilaginibacter_Mucilaginibacter 0.5333
## Otu0091_Cellulomonadaceae_Cellulomonadaceae 0.5333
## Otu0260_Gemmatirosa_Gemmatirosa 0.5333
## Otu0421_Verrucomicrobiae_Verrucomicrobiae 0.5333
## Otu0426_Acetobacteraceae_Acetobacteraceae 0.5333
## Otu0674_Fimbriimonadaceae_ge_Fimbriimonadaceae 0.5333
## Otu0673_Gaiellales_Gaiellales 0.6000
## Otu0140_Candidatus_Uzinura_Candidatus_Uzinura 0.5333
## Otu0695_Burkholderiaceae_Burkholderiaceae 0.5333
## Otu0329_Chloroflexi_Chloroflexi 0.5333
## Otu0409_Ferruginibacter_Ferruginibacter 0.6000
## Otu0577_Constrictibacter_Constrictibacter 0.5333
## Otu0266_Rhodobacteraceae_Rhodobacteraceae 0.6000
## Otu0256_Chitinophaga_Chitinophaga 0.5333
## Otu0425_uncultured_uncultured 0.6000
## Otu0510_FBP_ge_FBP 0.6000
## Otu0247_Spirosomaceae_Spirosomaceae 0.4667
## Otu0295_Armatimonadales_ge_Armatimonadales 0.4667
## Otu0363_Acidiphilium_Acidiphilium 0.4667
## Otu0400_Actinoplanes_Actinoplanes 0.4667
## Otu0494_Spirosoma_Spirosoma 0.4667
## Otu0583_R7C24_ge_R7C24 0.4667
## Otu0589_Rhizorhapis_Rhizorhapis 0.4667
## Otu0639_Spirosomaceae_Spirosomaceae 0.4667
## Otu0640_WD2101_soil_group_ge_WD2101_soil_group 0.5333
## Otu0749_Marmoricola_Marmoricola 0.4667
## Otu0913_Haliangium_Haliangium 0.4667
## Otu0250_Oligoflexus_Oligoflexus 0.5333
## Otu0174_Polyangium_Polyangium 0.5333
## Otu0592_Chthoniobacter_Chthoniobacter 0.6000
## Otu0413_Hymenobacter_Hymenobacter 0.4667
## Otu0517_uncultured_ge_uncultured 0.4667
## Otu0389_Bryobacter_Bryobacter 0.5333
## Otu0502_Hymenobacter_Hymenobacter 0.4667
## Otu0099_Xanthomonas_Xanthomonas 0.4667
## Otu0239_Archangiaceae_Archangiaceae 0.6000
## Otu0404_Solirubrobacteraceae_Solirubrobacteraceae 0.6667
## Otu0537_Segetibacter_Segetibacter 0.6000
## Otu0641_Acidobacteriaceae__Acidobacteriaceae_ 0.4667
## Otu0679_Tepidisphaerales_Tepidisphaerales 0.4667
## Otu0703_Bacteroidia_Bacteroidia 0.4667
## Otu0308_Oxyphotobacteria_Oxyphotobacteria 0.5333
## Otu0576_JG30.KF.CM45_ge_JG30.KF.CM45 0.5333
## Otu0657_uncultured_ge_uncultured 0.4667
## Otu0333_Nocardioides_Nocardioides 0.5333
## Otu0667_Fimbriiglobus_Fimbriiglobus 0.4667
## Otu0800_Sericytochromatia_ge_Sericytochromatia 0.4667
## Otu0336_Chitinophagaceae_Chitinophagaceae 0.6667
## Otu0448_Devosiaceae_Devosiaceae 0.4667
## Otu0251_Rhizorhapis_Rhizorhapis 0.4000
## Otu0346_Chloroflexi_Chloroflexi 0.4000
## Otu0531_Alphaproteobacteria_Alphaproteobacteria 0.4000
## Otu0568_uncultured_uncultured 0.4667
## Otu0593_D05.2_ge_D05.2 0.4667
## Otu0594_Saccharimonadales_ge_Saccharimonadales 0.4000
## Otu0652_Tepidisphaerales_Tepidisphaerales 0.4000
## Otu0699_Sphingomonadaceae_Sphingomonadaceae 0.4000
## Otu0805_Acetobacteraceae_Acetobacteraceae 0.4000
## Otu0815_Chthoniobacter_Chthoniobacter 0.4000
## Otu0878_Sphingobacteriaceae_Sphingobacteriaceae 0.4000
## Otu0908_C0119_ge_C0119 0.4000
## Otu0914_Armatimonadales_ge_Armatimonadales 0.4000
## Otu1019_uncultured_uncultured 0.4000
## Otu0241_Burkholderia.Caballeronia.Paraburkholderia_Burkholderia.Caballeronia.Paraburkholderia 0.4667
## Otu0477_Saccharimonadales_ge_Saccharimonadales 0.4667
## Otu0748_Chthonomonas_Chthonomonas 0.4667
## Otu0439_Spirosoma_Spirosoma 0.4000
## Otu0370_uncultured_ge_uncultured 0.4667
## Otu0521_JG30.KF.CM45_ge_JG30.KF.CM45 0.4667
## Otu0242_Rickettsiales_Rickettsiales 0.4667
## Otu0188_Flavobacterium_Flavobacterium 0.4667
## Otu0643_Saccharimonadales_ge_Saccharimonadales 0.4000
## Otu0427_Solirubrobacterales_Solirubrobacterales 0.4000
## Otu0201_uncultured_uncultured 0.5333
## Otu0614_WD2101_soil_group_ge_WD2101_soil_group 0.4000
## Otu0804_Pajaroellobacter_Pajaroellobacter 0.4000
## Otu0557_Acetobacteraceae_Acetobacteraceae 0.4667
## Otu0398_Frankiales_Frankiales 0.5333
## Otu0536_Actinoplanes_Actinoplanes 0.4000
## Otu0617_1174.901.12_1174.901.12 0.4667
## Otu0402_Nocardioides_Nocardioides 0.4667
## Otu0627_Chthoniobacter_Chthoniobacter 0.4000
## Otu0669_WD2101_soil_group_ge_WD2101_soil_group 0.4000
## Otu0967_Hymenobacter_Hymenobacter 0.4000
## Otu0473_Ancylobacter_Ancylobacter 0.3333
## Otu0619_Sphingomonas_Sphingomonas 0.3333
## Otu0636_Chitinophagaceae_Chitinophagaceae 0.3333
## Otu0658_Chloroflexaceae_Chloroflexaceae 0.3333
## Otu0715_Saccharimonadales_ge_Saccharimonadales 0.3333
## Otu0763_Kineosporiaceae_Kineosporiaceae 0.3333
## Otu0797_Chitinophagaceae_Chitinophagaceae 0.3333
## Otu0842_Acetobacteraceae_Acetobacteraceae 0.3333
## Otu0847_WD2101_soil_group_ge_WD2101_soil_group 0.3333
## Otu0875_Armatimonadales_ge_Armatimonadales 0.3333
## Otu0892_Aetherobacter_Aetherobacter 0.3333
## Otu0898_Isosphaeraceae_Isosphaeraceae 0.3333
## Otu1094_Solirubrobacteraceae_Solirubrobacteraceae 0.3333
## Otu1220_Roseomonas_Roseomonas 0.3333
## Otu1290_Parafilimonas_Parafilimonas 0.3333
## Otu0601_Mucilaginibacter_Mucilaginibacter 0.4000
## Otu0685_Propionibacteriaceae_Propionibacteriaceae 0.4000
## Otu0538_JCM_18997_JCM_18997 0.4000
## Otu0618_Fibrella_Fibrella 0.3333
## Otu0596_Chloroflexi_Chloroflexi 0.3333
## Otu0745_Hymenobacter_Hymenobacter 0.3333
## Otu0463_Rubellimicrobium_Rubellimicrobium 0.3333
## Otu0367_Gemmatirosa_Gemmatirosa 0.3333
## Otu0532_Geminicoccus_Geminicoccus 0.3333
## Otu0280_Saccharimonadales_ge_Saccharimonadales 0.2667
## Otu0452_Acetobacteraceae_Acetobacteraceae 0.2667
## Otu0453_Candidatus_Udaeobacter_Candidatus_Udaeobacter 0.2667
## Otu0495_Nostoc_PCC.73102_Nostoc_PCC.73102 0.2667
## Otu0496_Subgroup_6_ge_Subgroup_6 0.2667
## Otu0547_Nocardioides_Nocardioides 0.2667
## Otu0637_BIrii41_ge_BIrii41 0.2667
## Otu0650_Acetobacteraceae_Acetobacteraceae 0.2667
## Otu0707_Fimbriimonadaceae_ge_Fimbriimonadaceae 0.2667
## Otu0726_Bacteroidia_Bacteroidia 0.2667
## Otu0756_uncultured_uncultured 0.2667
## Otu0787_Steroidobacter_Steroidobacter 0.2667
## Otu0789_Alphaproteobacteria_Alphaproteobacteria 0.2667
## Otu0798_Pajaroellobacter_Pajaroellobacter 0.2667
## Otu0802_Spirosoma_Spirosoma 0.2667
## Otu0823_Sphingobacteriaceae_Sphingobacteriaceae 0.2667
## Otu0824_Sphingomonadaceae_Sphingomonadaceae 0.2667
## Otu0846_Ferruginibacter_Ferruginibacter 0.2667
## Otu0873_Agaricicola_Agaricicola 0.2667
## Otu0885_WD2101_soil_group_ge_WD2101_soil_group 0.2667
## Otu0901_Spirosoma_Spirosoma 0.2667
## Otu0932_Armatimonadales_ge_Armatimonadales 0.2667
## Otu0948_WD2101_soil_group_ge_WD2101_soil_group 0.2667
## Otu0950_Flavobacterium_Flavobacterium 0.2667
## Otu0963_Verrucomicrobiae_Verrucomicrobiae 0.2667
## Otu0966_Acetobacteraceae_Acetobacteraceae 0.2667
## Otu0987_Chloroflexi_Chloroflexi 0.2667
## Otu1006_Pajaroellobacter_Pajaroellobacter 0.2667
## Otu1012_Psychroglaciecola_Psychroglaciecola 0.2667
## Otu1059_Devosia_Devosia 0.2667
## Otu1072_Acidobacteriaceae__Acidobacteriaceae_ 0.2667
## Otu1080_Acidibacter_Acidibacter 0.2667
## Otu1084_RBG.13.54.9_ge_RBG.13.54.9 0.2667
## Otu1109_Xanthobacteraceae_Xanthobacteraceae 0.2667
## Otu1139_Rhodovastum_Rhodovastum 0.2667
## Otu1245_Thermoleophilia_Thermoleophilia 0.2667
## Otu1246_Isosphaeraceae_Isosphaeraceae 0.2667
## Otu1247_Spirosoma_Spirosoma 0.2667
## Otu1249_Hymenobacter_Hymenobacter 0.2667
## Otu1256_Gemmata_Gemmata 0.2667
## Otu1258_Tepidisphaerales_Tepidisphaerales 0.2667
## Otu1311_Kaistia_Kaistia 0.2667
## Otu1398_Hymenobacter_Hymenobacter 0.2667
## Otu1403_Chitinophagaceae_Chitinophagaceae 0.2667
## Otu1442_Sphingobacteriaceae_Sphingobacteriaceae 0.2667
## Otu1567_Pajaroellobacter_Pajaroellobacter 0.2667
## Otu1603_Chitinophagaceae_Chitinophagaceae 0.2667
## stat
## Otu0121_Terrimonas_Terrimonas 0.991
## Otu0145_uncultured_uncultured 0.983
## Otu0136_Flavisolibacter_Flavisolibacter 0.981
## Otu0212_Spirosoma_Spirosoma 0.966
## Otu0187_uncultured_uncultured 0.963
## Otu0252_Armatimonadales_ge_Armatimonadales 0.947
## Otu0209_Spirosoma_Spirosoma 0.943
## Otu0162_Subgroup_6_ge_Subgroup_6 0.929
## Otu0172_Spirosomaceae_Spirosomaceae 0.927
## Otu0109_Spirosoma_Spirosoma 0.911
## Otu0144_67.14_ge_67.14 0.910
## Otu0064_Ferruginibacter_Ferruginibacter 0.907
## Otu0034_Pseudonocardia_Pseudonocardia 0.902
## Otu0411_Rhizobiaceae_Rhizobiaceae 0.899
## Otu0117_Cryptosporangium_Cryptosporangium 0.898
## Otu0167_Spirosomaceae_Spirosomaceae 0.895
## Otu0272_Beijerinckiaceae_Beijerinckiaceae 0.894
## Otu0238_Chthoniobacter_Chthoniobacter 0.886
## Otu0258_Acetobacteraceae_Acetobacteraceae 0.885
## Otu0108_Chitinophagaceae_Chitinophagaceae 0.882
## Otu0054_Geodermatophilus_Geodermatophilus 0.880
## Otu0281_Hymenobacter_Hymenobacter 0.875
## Otu0113_Kineosporia_Kineosporia 0.873
## Otu0299_R7C24_ge_R7C24 0.868
## Otu0203_Devosia_Devosia 0.867
## Otu0312_Caulobacter_Caulobacter 0.861
## Otu0152_Spirosoma_Spirosoma 0.860
## Otu0129_Spirosomaceae_Spirosomaceae 0.850
## Otu0171_Sphingomonas_Sphingomonas 0.850
## Otu0232_Chthoniobacter_Chthoniobacter 0.847
## Otu0135_JG30.KF.CM45_ge_JG30.KF.CM45 0.843
## Otu0374_Flavobacterium_Flavobacterium 0.841
## Otu0179_Sphingomonadaceae_Sphingomonadaceae 0.837
## Otu0176_Methylobacterium_Methylobacterium 0.836
## Otu0410_Acetobacteraceae_Acetobacteraceae 0.836
## Otu0352_Chthoniobacter_Chthoniobacter 0.835
## Otu0243_Chthoniobacter_Chthoniobacter 0.829
## Otu0277_Spirosoma_Spirosoma 0.822
## Otu0296_Fimbriiglobus_Fimbriiglobus 0.822
## Otu0354_Chthoniobacter_Chthoniobacter 0.822
## Otu0301_Xanthobacteraceae_Xanthobacteraceae 0.816
## Otu0303_Spirosoma_Spirosoma 0.816
## Otu0441_Mucilaginibacter_Mucilaginibacter 0.816
## Otu0681_Phenylobacterium_Phenylobacterium 0.816
## Otu0223_Haliangium_Haliangium 0.808
## Otu0262_Spirosoma_Spirosoma 0.805
## Otu0235_Blastocatella_Blastocatella 0.803
## Otu0335_Chitinophagaceae_Chitinophagaceae 0.792
## Otu0717_Aureimonas_Aureimonas 0.791
## Otu0360_Singulisphaera_Singulisphaera 0.784
## Otu0271_Nocardioides_Nocardioides 0.784
## Otu0204_Microvirga_Microvirga 0.784
## Otu0154_Mycobacterium_Mycobacterium 0.784
## Otu0208_Myxococcales_Myxococcales 0.784
## Otu0405_Mucilaginibacter_Mucilaginibacter 0.782
## Otu0284_Rhizobiaceae_Rhizobiaceae 0.780
## Otu0364_Chitinophagaceae_Chitinophagaceae 0.777
## Otu0213_Dactylosporangium_Dactylosporangium 0.775
## Otu0218_Nocardioides_Nocardioides 0.775
## Otu0455_Ferruginibacter_Ferruginibacter 0.775
## Otu0462_Beijerinckiaceae_Beijerinckiaceae 0.775
## Otu0493_Chthoniobacter_Chthoniobacter 0.775
## Otu0539_Segetibacter_Segetibacter 0.775
## Otu0569_Saccharimonadales_ge_Saccharimonadales 0.775
## Otu0606_Candidatus_Alysiosphaera_Candidatus_Alysiosphaera 0.775
## Otu0412_Deinococcus_Deinococcus 0.770
## Otu0408_Gemmatimonas_Gemmatimonas 0.770
## Otu0464_Cytophagales_Cytophagales 0.770
## Otu0221_Archangiaceae_Archangiaceae 0.763
## Otu0297_67.14_ge_67.14 0.762
## Otu0382_Fimbriimonadaceae_Fimbriimonadaceae 0.760
## Otu0293_Chthoniobacter_Chthoniobacter 0.760
## Otu0369_Larkinella_Larkinella 0.759
## Otu0420_Chitinophagaceae_Chitinophagaceae 0.758
## Otu0343_Truepera_Truepera 0.754
## Otu0549_Acetobacteraceae_Acetobacteraceae 0.754
## Otu0733_AKIW781_ge_AKIW781 0.753
## Otu0275_Actinoplanes_Actinoplanes 0.749
## Otu0157_Segetibacter_Segetibacter 0.740
## Otu0289_uncultured_uncultured 0.737
## Otu0519_Chthoniobacter_Chthoniobacter 0.736
## Otu0183_Polyangiaceae_Polyangiaceae 0.732
## Otu0371_uncultured_uncultured 0.730
## Otu0435_Rhizobiales_Rhizobiales 0.730
## Otu0444_Chthoniobacter_Chthoniobacter 0.730
## Otu0457_Psychroglaciecola_Psychroglaciecola 0.730
## Otu0492_Gemmata_Gemmata 0.730
## Otu0507_Dyadobacter_Dyadobacter 0.730
## Otu0567_Blastocatellaceae_Blastocatellaceae 0.730
## Otu0575_Gemmatirosa_Gemmatirosa 0.730
## Otu0349_67.14_ge_67.14 0.723
## Otu0491_uncultured_uncultured 0.717
## Otu0511_Chthoniobacter_Chthoniobacter 0.717
## Otu0116_Acetobacteraceae_Acetobacteraceae 0.716
## Otu0415_Mucilaginibacter_Mucilaginibacter 0.714
## Otu0091_Cellulomonadaceae_Cellulomonadaceae 0.711
## Otu0260_Gemmatirosa_Gemmatirosa 0.710
## Otu0421_Verrucomicrobiae_Verrucomicrobiae 0.709
## Otu0426_Acetobacteraceae_Acetobacteraceae 0.708
## Otu0674_Fimbriimonadaceae_ge_Fimbriimonadaceae 0.707
## Otu0673_Gaiellales_Gaiellales 0.703
## Otu0140_Candidatus_Uzinura_Candidatus_Uzinura 0.702
## Otu0695_Burkholderiaceae_Burkholderiaceae 0.702
## Otu0329_Chloroflexi_Chloroflexi 0.699
## Otu0409_Ferruginibacter_Ferruginibacter 0.695
## Otu0577_Constrictibacter_Constrictibacter 0.693
## Otu0266_Rhodobacteraceae_Rhodobacteraceae 0.690
## Otu0256_Chitinophaga_Chitinophaga 0.689
## Otu0425_uncultured_uncultured 0.689
## Otu0510_FBP_ge_FBP 0.688
## Otu0247_Spirosomaceae_Spirosomaceae 0.683
## Otu0295_Armatimonadales_ge_Armatimonadales 0.683
## Otu0363_Acidiphilium_Acidiphilium 0.683
## Otu0400_Actinoplanes_Actinoplanes 0.683
## Otu0494_Spirosoma_Spirosoma 0.683
## Otu0583_R7C24_ge_R7C24 0.683
## Otu0589_Rhizorhapis_Rhizorhapis 0.683
## Otu0639_Spirosomaceae_Spirosomaceae 0.683
## Otu0640_WD2101_soil_group_ge_WD2101_soil_group 0.683
## Otu0749_Marmoricola_Marmoricola 0.683
## Otu0913_Haliangium_Haliangium 0.683
## Otu0250_Oligoflexus_Oligoflexus 0.681
## Otu0174_Polyangium_Polyangium 0.672
## Otu0592_Chthoniobacter_Chthoniobacter 0.671
## Otu0413_Hymenobacter_Hymenobacter 0.670
## Otu0517_uncultured_ge_uncultured 0.664
## Otu0389_Bryobacter_Bryobacter 0.663
## Otu0502_Hymenobacter_Hymenobacter 0.663
## Otu0099_Xanthomonas_Xanthomonas 0.660
## Otu0239_Archangiaceae_Archangiaceae 0.659
## Otu0404_Solirubrobacteraceae_Solirubrobacteraceae 0.658
## Otu0537_Segetibacter_Segetibacter 0.657
## Otu0641_Acidobacteriaceae__Acidobacteriaceae_ 0.654
## Otu0679_Tepidisphaerales_Tepidisphaerales 0.654
## Otu0703_Bacteroidia_Bacteroidia 0.654
## Otu0308_Oxyphotobacteria_Oxyphotobacteria 0.653
## Otu0576_JG30.KF.CM45_ge_JG30.KF.CM45 0.649
## Otu0657_uncultured_ge_uncultured 0.648
## Otu0333_Nocardioides_Nocardioides 0.645
## Otu0667_Fimbriiglobus_Fimbriiglobus 0.644
## Otu0800_Sericytochromatia_ge_Sericytochromatia 0.644
## Otu0336_Chitinophagaceae_Chitinophagaceae 0.642
## Otu0448_Devosiaceae_Devosiaceae 0.635
## Otu0251_Rhizorhapis_Rhizorhapis 0.632
## Otu0346_Chloroflexi_Chloroflexi 0.632
## Otu0531_Alphaproteobacteria_Alphaproteobacteria 0.632
## Otu0568_uncultured_uncultured 0.632
## Otu0593_D05.2_ge_D05.2 0.632
## Otu0594_Saccharimonadales_ge_Saccharimonadales 0.632
## Otu0652_Tepidisphaerales_Tepidisphaerales 0.632
## Otu0699_Sphingomonadaceae_Sphingomonadaceae 0.632
## Otu0805_Acetobacteraceae_Acetobacteraceae 0.632
## Otu0815_Chthoniobacter_Chthoniobacter 0.632
## Otu0878_Sphingobacteriaceae_Sphingobacteriaceae 0.632
## Otu0908_C0119_ge_C0119 0.632
## Otu0914_Armatimonadales_ge_Armatimonadales 0.632
## Otu1019_uncultured_uncultured 0.632
## Otu0241_Burkholderia.Caballeronia.Paraburkholderia_Burkholderia.Caballeronia.Paraburkholderia 0.631
## Otu0477_Saccharimonadales_ge_Saccharimonadales 0.624
## Otu0748_Chthonomonas_Chthonomonas 0.624
## Otu0439_Spirosoma_Spirosoma 0.621
## Otu0370_uncultured_ge_uncultured 0.620
## Otu0521_JG30.KF.CM45_ge_JG30.KF.CM45 0.616
## Otu0242_Rickettsiales_Rickettsiales 0.613
## Otu0188_Flavobacterium_Flavobacterium 0.611
## Otu0643_Saccharimonadales_ge_Saccharimonadales 0.608
## Otu0427_Solirubrobacterales_Solirubrobacterales 0.603
## Otu0201_uncultured_uncultured 0.601
## Otu0614_WD2101_soil_group_ge_WD2101_soil_group 0.600
## Otu0804_Pajaroellobacter_Pajaroellobacter 0.600
## Otu0557_Acetobacteraceae_Acetobacteraceae 0.599
## Otu0398_Frankiales_Frankiales 0.596
## Otu0536_Actinoplanes_Actinoplanes 0.596
## Otu0617_1174.901.12_1174.901.12 0.596
## Otu0402_Nocardioides_Nocardioides 0.588
## Otu0627_Chthoniobacter_Chthoniobacter 0.586
## Otu0669_WD2101_soil_group_ge_WD2101_soil_group 0.586
## Otu0967_Hymenobacter_Hymenobacter 0.586
## Otu0473_Ancylobacter_Ancylobacter 0.577
## Otu0619_Sphingomonas_Sphingomonas 0.577
## Otu0636_Chitinophagaceae_Chitinophagaceae 0.577
## Otu0658_Chloroflexaceae_Chloroflexaceae 0.577
## Otu0715_Saccharimonadales_ge_Saccharimonadales 0.577
## Otu0763_Kineosporiaceae_Kineosporiaceae 0.577
## Otu0797_Chitinophagaceae_Chitinophagaceae 0.577
## Otu0842_Acetobacteraceae_Acetobacteraceae 0.577
## Otu0847_WD2101_soil_group_ge_WD2101_soil_group 0.577
## Otu0875_Armatimonadales_ge_Armatimonadales 0.577
## Otu0892_Aetherobacter_Aetherobacter 0.577
## Otu0898_Isosphaeraceae_Isosphaeraceae 0.577
## Otu1094_Solirubrobacteraceae_Solirubrobacteraceae 0.577
## Otu1220_Roseomonas_Roseomonas 0.577
## Otu1290_Parafilimonas_Parafilimonas 0.577
## Otu0601_Mucilaginibacter_Mucilaginibacter 0.566
## Otu0685_Propionibacteriaceae_Propionibacteriaceae 0.566
## Otu0538_JCM_18997_JCM_18997 0.555
## Otu0618_Fibrella_Fibrella 0.548
## Otu0596_Chloroflexi_Chloroflexi 0.544
## Otu0745_Hymenobacter_Hymenobacter 0.544
## Otu0463_Rubellimicrobium_Rubellimicrobium 0.538
## Otu0367_Gemmatirosa_Gemmatirosa 0.527
## Otu0532_Geminicoccus_Geminicoccus 0.524
## Otu0280_Saccharimonadales_ge_Saccharimonadales 0.516
## Otu0452_Acetobacteraceae_Acetobacteraceae 0.516
## Otu0453_Candidatus_Udaeobacter_Candidatus_Udaeobacter 0.516
## Otu0495_Nostoc_PCC.73102_Nostoc_PCC.73102 0.516
## Otu0496_Subgroup_6_ge_Subgroup_6 0.516
## Otu0547_Nocardioides_Nocardioides 0.516
## Otu0637_BIrii41_ge_BIrii41 0.516
## Otu0650_Acetobacteraceae_Acetobacteraceae 0.516
## Otu0707_Fimbriimonadaceae_ge_Fimbriimonadaceae 0.516
## Otu0726_Bacteroidia_Bacteroidia 0.516
## Otu0756_uncultured_uncultured 0.516
## Otu0787_Steroidobacter_Steroidobacter 0.516
## Otu0789_Alphaproteobacteria_Alphaproteobacteria 0.516
## Otu0798_Pajaroellobacter_Pajaroellobacter 0.516
## Otu0802_Spirosoma_Spirosoma 0.516
## Otu0823_Sphingobacteriaceae_Sphingobacteriaceae 0.516
## Otu0824_Sphingomonadaceae_Sphingomonadaceae 0.516
## Otu0846_Ferruginibacter_Ferruginibacter 0.516
## Otu0873_Agaricicola_Agaricicola 0.516
## Otu0885_WD2101_soil_group_ge_WD2101_soil_group 0.516
## Otu0901_Spirosoma_Spirosoma 0.516
## Otu0932_Armatimonadales_ge_Armatimonadales 0.516
## Otu0948_WD2101_soil_group_ge_WD2101_soil_group 0.516
## Otu0950_Flavobacterium_Flavobacterium 0.516
## Otu0963_Verrucomicrobiae_Verrucomicrobiae 0.516
## Otu0966_Acetobacteraceae_Acetobacteraceae 0.516
## Otu0987_Chloroflexi_Chloroflexi 0.516
## Otu1006_Pajaroellobacter_Pajaroellobacter 0.516
## Otu1012_Psychroglaciecola_Psychroglaciecola 0.516
## Otu1059_Devosia_Devosia 0.516
## Otu1072_Acidobacteriaceae__Acidobacteriaceae_ 0.516
## Otu1080_Acidibacter_Acidibacter 0.516
## Otu1084_RBG.13.54.9_ge_RBG.13.54.9 0.516
## Otu1109_Xanthobacteraceae_Xanthobacteraceae 0.516
## Otu1139_Rhodovastum_Rhodovastum 0.516
## Otu1245_Thermoleophilia_Thermoleophilia 0.516
## Otu1246_Isosphaeraceae_Isosphaeraceae 0.516
## Otu1247_Spirosoma_Spirosoma 0.516
## Otu1249_Hymenobacter_Hymenobacter 0.516
## Otu1256_Gemmata_Gemmata 0.516
## Otu1258_Tepidisphaerales_Tepidisphaerales 0.516
## Otu1311_Kaistia_Kaistia 0.516
## Otu1398_Hymenobacter_Hymenobacter 0.516
## Otu1403_Chitinophagaceae_Chitinophagaceae 0.516
## Otu1442_Sphingobacteriaceae_Sphingobacteriaceae 0.516
## Otu1567_Pajaroellobacter_Pajaroellobacter 0.516
## Otu1603_Chitinophagaceae_Chitinophagaceae 0.516
## p.value
## Otu0121_Terrimonas_Terrimonas 1e-04
## Otu0145_uncultured_uncultured 1e-04
## Otu0136_Flavisolibacter_Flavisolibacter 1e-04
## Otu0212_Spirosoma_Spirosoma 1e-04
## Otu0187_uncultured_uncultured 1e-04
## Otu0252_Armatimonadales_ge_Armatimonadales 1e-04
## Otu0209_Spirosoma_Spirosoma 1e-04
## Otu0162_Subgroup_6_ge_Subgroup_6 1e-04
## Otu0172_Spirosomaceae_Spirosomaceae 1e-04
## Otu0109_Spirosoma_Spirosoma 1e-04
## Otu0144_67.14_ge_67.14 1e-04
## Otu0064_Ferruginibacter_Ferruginibacter 1e-04
## Otu0034_Pseudonocardia_Pseudonocardia 0.0003
## Otu0411_Rhizobiaceae_Rhizobiaceae 1e-04
## Otu0117_Cryptosporangium_Cryptosporangium 1e-04
## Otu0167_Spirosomaceae_Spirosomaceae 1e-04
## Otu0272_Beijerinckiaceae_Beijerinckiaceae 1e-04
## Otu0238_Chthoniobacter_Chthoniobacter 1e-04
## Otu0258_Acetobacteraceae_Acetobacteraceae 1e-04
## Otu0108_Chitinophagaceae_Chitinophagaceae 1e-04
## Otu0054_Geodermatophilus_Geodermatophilus 1e-04
## Otu0281_Hymenobacter_Hymenobacter 1e-04
## Otu0113_Kineosporia_Kineosporia 1e-04
## Otu0299_R7C24_ge_R7C24 1e-04
## Otu0203_Devosia_Devosia 1e-04
## Otu0312_Caulobacter_Caulobacter 1e-04
## Otu0152_Spirosoma_Spirosoma 0.0002
## Otu0129_Spirosomaceae_Spirosomaceae 1e-04
## Otu0171_Sphingomonas_Sphingomonas 0.0003
## Otu0232_Chthoniobacter_Chthoniobacter 0.0002
## Otu0135_JG30.KF.CM45_ge_JG30.KF.CM45 1e-04
## Otu0374_Flavobacterium_Flavobacterium 1e-04
## Otu0179_Sphingomonadaceae_Sphingomonadaceae 0.0002
## Otu0176_Methylobacterium_Methylobacterium 1e-04
## Otu0410_Acetobacteraceae_Acetobacteraceae 1e-04
## Otu0352_Chthoniobacter_Chthoniobacter 1e-04
## Otu0243_Chthoniobacter_Chthoniobacter 0.0004
## Otu0277_Spirosoma_Spirosoma 1e-04
## Otu0296_Fimbriiglobus_Fimbriiglobus 1e-04
## Otu0354_Chthoniobacter_Chthoniobacter 1e-04
## Otu0301_Xanthobacteraceae_Xanthobacteraceae 1e-04
## Otu0303_Spirosoma_Spirosoma 1e-04
## Otu0441_Mucilaginibacter_Mucilaginibacter 0.0002
## Otu0681_Phenylobacterium_Phenylobacterium 0.0004
## Otu0223_Haliangium_Haliangium 0.0004
## Otu0262_Spirosoma_Spirosoma 0.0002
## Otu0235_Blastocatella_Blastocatella 0.0006
## Otu0335_Chitinophagaceae_Chitinophagaceae 0.0002
## Otu0717_Aureimonas_Aureimonas 1e-04
## Otu0360_Singulisphaera_Singulisphaera 0.0007
## Otu0271_Nocardioides_Nocardioides 0.0010
## Otu0204_Microvirga_Microvirga 0.0005
## Otu0154_Mycobacterium_Mycobacterium 0.0010
## Otu0208_Myxococcales_Myxococcales 0.0003
## Otu0405_Mucilaginibacter_Mucilaginibacter 1e-04
## Otu0284_Rhizobiaceae_Rhizobiaceae 1e-04
## Otu0364_Chitinophagaceae_Chitinophagaceae 0.0003
## Otu0213_Dactylosporangium_Dactylosporangium 0.0003
## Otu0218_Nocardioides_Nocardioides 0.0008
## Otu0455_Ferruginibacter_Ferruginibacter 0.0002
## Otu0462_Beijerinckiaceae_Beijerinckiaceae 0.0003
## Otu0493_Chthoniobacter_Chthoniobacter 0.0002
## Otu0539_Segetibacter_Segetibacter 0.0004
## Otu0569_Saccharimonadales_ge_Saccharimonadales 1e-04
## Otu0606_Candidatus_Alysiosphaera_Candidatus_Alysiosphaera 0.0004
## Otu0412_Deinococcus_Deinococcus 0.0005
## Otu0408_Gemmatimonas_Gemmatimonas 0.0004
## Otu0464_Cytophagales_Cytophagales 0.0003
## Otu0221_Archangiaceae_Archangiaceae 0.0008
## Otu0297_67.14_ge_67.14 0.0023
## Otu0382_Fimbriimonadaceae_Fimbriimonadaceae 0.0003
## Otu0293_Chthoniobacter_Chthoniobacter 0.0016
## Otu0369_Larkinella_Larkinella 0.0004
## Otu0420_Chitinophagaceae_Chitinophagaceae 0.0003
## Otu0343_Truepera_Truepera 0.0009
## Otu0549_Acetobacteraceae_Acetobacteraceae 0.0003
## Otu0733_AKIW781_ge_AKIW781 0.0006
## Otu0275_Actinoplanes_Actinoplanes 0.0032
## Otu0157_Segetibacter_Segetibacter 0.0421
## Otu0289_uncultured_uncultured 0.0013
## Otu0519_Chthoniobacter_Chthoniobacter 0.0006
## Otu0183_Polyangiaceae_Polyangiaceae 0.0013
## Otu0371_uncultured_uncultured 0.0009
## Otu0435_Rhizobiales_Rhizobiales 0.0007
## Otu0444_Chthoniobacter_Chthoniobacter 0.0011
## Otu0457_Psychroglaciecola_Psychroglaciecola 1e-04
## Otu0492_Gemmata_Gemmata 0.0017
## Otu0507_Dyadobacter_Dyadobacter 0.0007
## Otu0567_Blastocatellaceae_Blastocatellaceae 0.0013
## Otu0575_Gemmatirosa_Gemmatirosa 0.0003
## Otu0349_67.14_ge_67.14 0.0033
## Otu0491_uncultured_uncultured 0.0012
## Otu0511_Chthoniobacter_Chthoniobacter 0.0015
## Otu0116_Acetobacteraceae_Acetobacteraceae 0.0100
## Otu0415_Mucilaginibacter_Mucilaginibacter 0.0013
## Otu0091_Cellulomonadaceae_Cellulomonadaceae 0.0020
## Otu0260_Gemmatirosa_Gemmatirosa 0.0018
## Otu0421_Verrucomicrobiae_Verrucomicrobiae 0.0011
## Otu0426_Acetobacteraceae_Acetobacteraceae 0.0004
## Otu0674_Fimbriimonadaceae_ge_Fimbriimonadaceae 0.0013
## Otu0673_Gaiellales_Gaiellales 0.0024
## Otu0140_Candidatus_Uzinura_Candidatus_Uzinura 0.0054
## Otu0695_Burkholderiaceae_Burkholderiaceae 0.0012
## Otu0329_Chloroflexi_Chloroflexi 0.0048
## Otu0409_Ferruginibacter_Ferruginibacter 0.0040
## Otu0577_Constrictibacter_Constrictibacter 0.0011
## Otu0266_Rhodobacteraceae_Rhodobacteraceae 0.0076
## Otu0256_Chitinophaga_Chitinophaga 0.0023
## Otu0425_uncultured_uncultured 0.0013
## Otu0510_FBP_ge_FBP 0.0055
## Otu0247_Spirosomaceae_Spirosomaceae 0.0010
## Otu0295_Armatimonadales_ge_Armatimonadales 0.0009
## Otu0363_Acidiphilium_Acidiphilium 0.0016
## Otu0400_Actinoplanes_Actinoplanes 0.0010
## Otu0494_Spirosoma_Spirosoma 0.0016
## Otu0583_R7C24_ge_R7C24 0.0010
## Otu0589_Rhizorhapis_Rhizorhapis 0.0014
## Otu0639_Spirosomaceae_Spirosomaceae 0.0016
## Otu0640_WD2101_soil_group_ge_WD2101_soil_group 0.0037
## Otu0749_Marmoricola_Marmoricola 0.0013
## Otu0913_Haliangium_Haliangium 0.0015
## Otu0250_Oligoflexus_Oligoflexus 0.0077
## Otu0174_Polyangium_Polyangium 0.0104
## Otu0592_Chthoniobacter_Chthoniobacter 0.0130
## Otu0413_Hymenobacter_Hymenobacter 0.0028
## Otu0517_uncultured_ge_uncultured 0.0031
## Otu0389_Bryobacter_Bryobacter 0.0089
## Otu0502_Hymenobacter_Hymenobacter 0.0030
## Otu0099_Xanthomonas_Xanthomonas 0.0117
## Otu0239_Archangiaceae_Archangiaceae 0.0094
## Otu0404_Solirubrobacteraceae_Solirubrobacteraceae 0.0283
## Otu0537_Segetibacter_Segetibacter 0.0113
## Otu0641_Acidobacteriaceae__Acidobacteriaceae_ 0.0039
## Otu0679_Tepidisphaerales_Tepidisphaerales 0.0031
## Otu0703_Bacteroidia_Bacteroidia 0.0028
## Otu0308_Oxyphotobacteria_Oxyphotobacteria 0.0080
## Otu0576_JG30.KF.CM45_ge_JG30.KF.CM45 0.0071
## Otu0657_uncultured_ge_uncultured 0.0035
## Otu0333_Nocardioides_Nocardioides 0.0227
## Otu0667_Fimbriiglobus_Fimbriiglobus 0.0030
## Otu0800_Sericytochromatia_ge_Sericytochromatia 0.0032
## Otu0336_Chitinophagaceae_Chitinophagaceae 0.0169
## Otu0448_Devosiaceae_Devosiaceae 0.0120
## Otu0251_Rhizorhapis_Rhizorhapis 0.0042
## Otu0346_Chloroflexi_Chloroflexi 0.0040
## Otu0531_Alphaproteobacteria_Alphaproteobacteria 0.0046
## Otu0568_uncultured_uncultured 0.0077
## Otu0593_D05.2_ge_D05.2 0.0049
## Otu0594_Saccharimonadales_ge_Saccharimonadales 0.0040
## Otu0652_Tepidisphaerales_Tepidisphaerales 0.0045
## Otu0699_Sphingomonadaceae_Sphingomonadaceae 0.0046
## Otu0805_Acetobacteraceae_Acetobacteraceae 0.0038
## Otu0815_Chthoniobacter_Chthoniobacter 0.0046
## Otu0878_Sphingobacteriaceae_Sphingobacteriaceae 0.0030
## Otu0908_C0119_ge_C0119 0.0046
## Otu0914_Armatimonadales_ge_Armatimonadales 0.0036
## Otu1019_uncultured_uncultured 0.0044
## Otu0241_Burkholderia.Caballeronia.Paraburkholderia_Burkholderia.Caballeronia.Paraburkholderia 0.0139
## Otu0477_Saccharimonadales_ge_Saccharimonadales 0.0151
## Otu0748_Chthonomonas_Chthonomonas 0.0049
## Otu0439_Spirosoma_Spirosoma 0.0095
## Otu0370_uncultured_ge_uncultured 0.0074
## Otu0521_JG30.KF.CM45_ge_JG30.KF.CM45 0.0126
## Otu0242_Rickettsiales_Rickettsiales 0.0142
## Otu0188_Flavobacterium_Flavobacterium 0.0197
## Otu0643_Saccharimonadales_ge_Saccharimonadales 0.0099
## Otu0427_Solirubrobacterales_Solirubrobacterales 0.0102
## Otu0201_uncultured_uncultured 0.0253
## Otu0614_WD2101_soil_group_ge_WD2101_soil_group 0.0113
## Otu0804_Pajaroellobacter_Pajaroellobacter 0.0119
## Otu0557_Acetobacteraceae_Acetobacteraceae 0.0260
## Otu0398_Frankiales_Frankiales 0.0396
## Otu0536_Actinoplanes_Actinoplanes 0.0113
## Otu0617_1174.901.12_1174.901.12 0.0342
## Otu0402_Nocardioides_Nocardioides 0.0328
## Otu0627_Chthoniobacter_Chthoniobacter 0.0168
## Otu0669_WD2101_soil_group_ge_WD2101_soil_group 0.0150
## Otu0967_Hymenobacter_Hymenobacter 0.0195
## Otu0473_Ancylobacter_Ancylobacter 0.0178
## Otu0619_Sphingomonas_Sphingomonas 0.0181
## Otu0636_Chitinophagaceae_Chitinophagaceae 0.0173
## Otu0658_Chloroflexaceae_Chloroflexaceae 0.0176
## Otu0715_Saccharimonadales_ge_Saccharimonadales 0.0203
## Otu0763_Kineosporiaceae_Kineosporiaceae 0.0179
## Otu0797_Chitinophagaceae_Chitinophagaceae 0.0166
## Otu0842_Acetobacteraceae_Acetobacteraceae 0.0159
## Otu0847_WD2101_soil_group_ge_WD2101_soil_group 0.0176
## Otu0875_Armatimonadales_ge_Armatimonadales 0.0195
## Otu0892_Aetherobacter_Aetherobacter 0.0168
## Otu0898_Isosphaeraceae_Isosphaeraceae 0.0203
## Otu1094_Solirubrobacteraceae_Solirubrobacteraceae 0.0186
## Otu1220_Roseomonas_Roseomonas 0.0196
## Otu1290_Parafilimonas_Parafilimonas 0.0167
## Otu0601_Mucilaginibacter_Mucilaginibacter 0.0167
## Otu0685_Propionibacteriaceae_Propionibacteriaceae 0.0165
## Otu0538_JCM_18997_JCM_18997 0.0286
## Otu0618_Fibrella_Fibrella 0.0372
## Otu0596_Chloroflexi_Chloroflexi 0.0408
## Otu0745_Hymenobacter_Hymenobacter 0.0361
## Otu0463_Rubellimicrobium_Rubellimicrobium 0.0431
## Otu0367_Gemmatirosa_Gemmatirosa 0.0419
## Otu0532_Geminicoccus_Geminicoccus 0.0481
## Otu0280_Saccharimonadales_ge_Saccharimonadales 0.0431
## Otu0452_Acetobacteraceae_Acetobacteraceae 0.0462
## Otu0453_Candidatus_Udaeobacter_Candidatus_Udaeobacter 0.0352
## Otu0495_Nostoc_PCC.73102_Nostoc_PCC.73102 0.0491
## Otu0496_Subgroup_6_ge_Subgroup_6 0.0419
## Otu0547_Nocardioides_Nocardioides 0.0442
## Otu0637_BIrii41_ge_BIrii41 0.0325
## Otu0650_Acetobacteraceae_Acetobacteraceae 0.0421
## Otu0707_Fimbriimonadaceae_ge_Fimbriimonadaceae 0.0327
## Otu0726_Bacteroidia_Bacteroidia 0.0322
## Otu0756_uncultured_uncultured 0.0456
## Otu0787_Steroidobacter_Steroidobacter 0.0318
## Otu0789_Alphaproteobacteria_Alphaproteobacteria 0.0314
## Otu0798_Pajaroellobacter_Pajaroellobacter 0.0363
## Otu0802_Spirosoma_Spirosoma 0.0327
## Otu0823_Sphingobacteriaceae_Sphingobacteriaceae 0.0309
## Otu0824_Sphingomonadaceae_Sphingomonadaceae 0.0299
## Otu0846_Ferruginibacter_Ferruginibacter 0.0342
## Otu0873_Agaricicola_Agaricicola 0.0320
## Otu0885_WD2101_soil_group_ge_WD2101_soil_group 0.0322
## Otu0901_Spirosoma_Spirosoma 0.0329
## Otu0932_Armatimonadales_ge_Armatimonadales 0.0305
## Otu0948_WD2101_soil_group_ge_WD2101_soil_group 0.0315
## Otu0950_Flavobacterium_Flavobacterium 0.0390
## Otu0963_Verrucomicrobiae_Verrucomicrobiae 0.0356
## Otu0966_Acetobacteraceae_Acetobacteraceae 0.0341
## Otu0987_Chloroflexi_Chloroflexi 0.0330
## Otu1006_Pajaroellobacter_Pajaroellobacter 0.0325
## Otu1012_Psychroglaciecola_Psychroglaciecola 0.0337
## Otu1059_Devosia_Devosia 0.0323
## Otu1072_Acidobacteriaceae__Acidobacteriaceae_ 0.0315
## Otu1080_Acidibacter_Acidibacter 0.0328
## Otu1084_RBG.13.54.9_ge_RBG.13.54.9 0.0350
## Otu1109_Xanthobacteraceae_Xanthobacteraceae 0.0341
## Otu1139_Rhodovastum_Rhodovastum 0.0335
## Otu1245_Thermoleophilia_Thermoleophilia 0.0316
## Otu1246_Isosphaeraceae_Isosphaeraceae 0.0330
## Otu1247_Spirosoma_Spirosoma 0.0332
## Otu1249_Hymenobacter_Hymenobacter 0.0348
## Otu1256_Gemmata_Gemmata 0.0305
## Otu1258_Tepidisphaerales_Tepidisphaerales 0.0326
## Otu1311_Kaistia_Kaistia 0.0309
## Otu1398_Hymenobacter_Hymenobacter 0.0341
## Otu1403_Chitinophagaceae_Chitinophagaceae 0.0297
## Otu1442_Sphingobacteriaceae_Sphingobacteriaceae 0.0337
## Otu1567_Pajaroellobacter_Pajaroellobacter 0.0325
## Otu1603_Chitinophagaceae_Chitinophagaceae 0.0306
##
## Otu0121_Terrimonas_Terrimonas ***
## Otu0145_uncultured_uncultured ***
## Otu0136_Flavisolibacter_Flavisolibacter ***
## Otu0212_Spirosoma_Spirosoma ***
## Otu0187_uncultured_uncultured ***
## Otu0252_Armatimonadales_ge_Armatimonadales ***
## Otu0209_Spirosoma_Spirosoma ***
## Otu0162_Subgroup_6_ge_Subgroup_6 ***
## Otu0172_Spirosomaceae_Spirosomaceae ***
## Otu0109_Spirosoma_Spirosoma ***
## Otu0144_67.14_ge_67.14 ***
## Otu0064_Ferruginibacter_Ferruginibacter ***
## Otu0034_Pseudonocardia_Pseudonocardia ***
## Otu0411_Rhizobiaceae_Rhizobiaceae ***
## Otu0117_Cryptosporangium_Cryptosporangium ***
## Otu0167_Spirosomaceae_Spirosomaceae ***
## Otu0272_Beijerinckiaceae_Beijerinckiaceae ***
## Otu0238_Chthoniobacter_Chthoniobacter ***
## Otu0258_Acetobacteraceae_Acetobacteraceae ***
## Otu0108_Chitinophagaceae_Chitinophagaceae ***
## Otu0054_Geodermatophilus_Geodermatophilus ***
## Otu0281_Hymenobacter_Hymenobacter ***
## Otu0113_Kineosporia_Kineosporia ***
## Otu0299_R7C24_ge_R7C24 ***
## Otu0203_Devosia_Devosia ***
## Otu0312_Caulobacter_Caulobacter ***
## Otu0152_Spirosoma_Spirosoma ***
## Otu0129_Spirosomaceae_Spirosomaceae ***
## Otu0171_Sphingomonas_Sphingomonas ***
## Otu0232_Chthoniobacter_Chthoniobacter ***
## Otu0135_JG30.KF.CM45_ge_JG30.KF.CM45 ***
## Otu0374_Flavobacterium_Flavobacterium ***
## Otu0179_Sphingomonadaceae_Sphingomonadaceae ***
## Otu0176_Methylobacterium_Methylobacterium ***
## Otu0410_Acetobacteraceae_Acetobacteraceae ***
## Otu0352_Chthoniobacter_Chthoniobacter ***
## Otu0243_Chthoniobacter_Chthoniobacter ***
## Otu0277_Spirosoma_Spirosoma ***
## Otu0296_Fimbriiglobus_Fimbriiglobus ***
## Otu0354_Chthoniobacter_Chthoniobacter ***
## Otu0301_Xanthobacteraceae_Xanthobacteraceae ***
## Otu0303_Spirosoma_Spirosoma ***
## Otu0441_Mucilaginibacter_Mucilaginibacter ***
## Otu0681_Phenylobacterium_Phenylobacterium ***
## Otu0223_Haliangium_Haliangium ***
## Otu0262_Spirosoma_Spirosoma ***
## Otu0235_Blastocatella_Blastocatella ***
## Otu0335_Chitinophagaceae_Chitinophagaceae ***
## Otu0717_Aureimonas_Aureimonas ***
## Otu0360_Singulisphaera_Singulisphaera ***
## Otu0271_Nocardioides_Nocardioides ***
## Otu0204_Microvirga_Microvirga ***
## Otu0154_Mycobacterium_Mycobacterium ***
## Otu0208_Myxococcales_Myxococcales ***
## Otu0405_Mucilaginibacter_Mucilaginibacter ***
## Otu0284_Rhizobiaceae_Rhizobiaceae ***
## Otu0364_Chitinophagaceae_Chitinophagaceae ***
## Otu0213_Dactylosporangium_Dactylosporangium ***
## Otu0218_Nocardioides_Nocardioides ***
## Otu0455_Ferruginibacter_Ferruginibacter ***
## Otu0462_Beijerinckiaceae_Beijerinckiaceae ***
## Otu0493_Chthoniobacter_Chthoniobacter ***
## Otu0539_Segetibacter_Segetibacter ***
## Otu0569_Saccharimonadales_ge_Saccharimonadales ***
## Otu0606_Candidatus_Alysiosphaera_Candidatus_Alysiosphaera ***
## Otu0412_Deinococcus_Deinococcus ***
## Otu0408_Gemmatimonas_Gemmatimonas ***
## Otu0464_Cytophagales_Cytophagales ***
## Otu0221_Archangiaceae_Archangiaceae ***
## Otu0297_67.14_ge_67.14 **
## Otu0382_Fimbriimonadaceae_Fimbriimonadaceae ***
## Otu0293_Chthoniobacter_Chthoniobacter **
## Otu0369_Larkinella_Larkinella ***
## Otu0420_Chitinophagaceae_Chitinophagaceae ***
## Otu0343_Truepera_Truepera ***
## Otu0549_Acetobacteraceae_Acetobacteraceae ***
## Otu0733_AKIW781_ge_AKIW781 ***
## Otu0275_Actinoplanes_Actinoplanes **
## Otu0157_Segetibacter_Segetibacter *
## Otu0289_uncultured_uncultured **
## Otu0519_Chthoniobacter_Chthoniobacter ***
## Otu0183_Polyangiaceae_Polyangiaceae **
## Otu0371_uncultured_uncultured ***
## Otu0435_Rhizobiales_Rhizobiales ***
## Otu0444_Chthoniobacter_Chthoniobacter **
## Otu0457_Psychroglaciecola_Psychroglaciecola ***
## Otu0492_Gemmata_Gemmata **
## Otu0507_Dyadobacter_Dyadobacter ***
## Otu0567_Blastocatellaceae_Blastocatellaceae **
## Otu0575_Gemmatirosa_Gemmatirosa ***
## Otu0349_67.14_ge_67.14 **
## Otu0491_uncultured_uncultured **
## Otu0511_Chthoniobacter_Chthoniobacter **
## Otu0116_Acetobacteraceae_Acetobacteraceae **
## Otu0415_Mucilaginibacter_Mucilaginibacter **
## Otu0091_Cellulomonadaceae_Cellulomonadaceae **
## Otu0260_Gemmatirosa_Gemmatirosa **
## Otu0421_Verrucomicrobiae_Verrucomicrobiae **
## Otu0426_Acetobacteraceae_Acetobacteraceae ***
## Otu0674_Fimbriimonadaceae_ge_Fimbriimonadaceae **
## Otu0673_Gaiellales_Gaiellales **
## Otu0140_Candidatus_Uzinura_Candidatus_Uzinura **
## Otu0695_Burkholderiaceae_Burkholderiaceae **
## Otu0329_Chloroflexi_Chloroflexi **
## Otu0409_Ferruginibacter_Ferruginibacter **
## Otu0577_Constrictibacter_Constrictibacter **
## Otu0266_Rhodobacteraceae_Rhodobacteraceae **
## Otu0256_Chitinophaga_Chitinophaga **
## Otu0425_uncultured_uncultured **
## Otu0510_FBP_ge_FBP **
## Otu0247_Spirosomaceae_Spirosomaceae ***
## Otu0295_Armatimonadales_ge_Armatimonadales ***
## Otu0363_Acidiphilium_Acidiphilium **
## Otu0400_Actinoplanes_Actinoplanes ***
## Otu0494_Spirosoma_Spirosoma **
## Otu0583_R7C24_ge_R7C24 ***
## Otu0589_Rhizorhapis_Rhizorhapis **
## Otu0639_Spirosomaceae_Spirosomaceae **
## Otu0640_WD2101_soil_group_ge_WD2101_soil_group **
## Otu0749_Marmoricola_Marmoricola **
## Otu0913_Haliangium_Haliangium **
## Otu0250_Oligoflexus_Oligoflexus **
## Otu0174_Polyangium_Polyangium *
## Otu0592_Chthoniobacter_Chthoniobacter *
## Otu0413_Hymenobacter_Hymenobacter **
## Otu0517_uncultured_ge_uncultured **
## Otu0389_Bryobacter_Bryobacter **
## Otu0502_Hymenobacter_Hymenobacter **
## Otu0099_Xanthomonas_Xanthomonas *
## Otu0239_Archangiaceae_Archangiaceae **
## Otu0404_Solirubrobacteraceae_Solirubrobacteraceae *
## Otu0537_Segetibacter_Segetibacter *
## Otu0641_Acidobacteriaceae__Acidobacteriaceae_ **
## Otu0679_Tepidisphaerales_Tepidisphaerales **
## Otu0703_Bacteroidia_Bacteroidia **
## Otu0308_Oxyphotobacteria_Oxyphotobacteria **
## Otu0576_JG30.KF.CM45_ge_JG30.KF.CM45 **
## Otu0657_uncultured_ge_uncultured **
## Otu0333_Nocardioides_Nocardioides *
## Otu0667_Fimbriiglobus_Fimbriiglobus **
## Otu0800_Sericytochromatia_ge_Sericytochromatia **
## Otu0336_Chitinophagaceae_Chitinophagaceae *
## Otu0448_Devosiaceae_Devosiaceae *
## Otu0251_Rhizorhapis_Rhizorhapis **
## Otu0346_Chloroflexi_Chloroflexi **
## Otu0531_Alphaproteobacteria_Alphaproteobacteria **
## Otu0568_uncultured_uncultured **
## Otu0593_D05.2_ge_D05.2 **
## Otu0594_Saccharimonadales_ge_Saccharimonadales **
## Otu0652_Tepidisphaerales_Tepidisphaerales **
## Otu0699_Sphingomonadaceae_Sphingomonadaceae **
## Otu0805_Acetobacteraceae_Acetobacteraceae **
## Otu0815_Chthoniobacter_Chthoniobacter **
## Otu0878_Sphingobacteriaceae_Sphingobacteriaceae **
## Otu0908_C0119_ge_C0119 **
## Otu0914_Armatimonadales_ge_Armatimonadales **
## Otu1019_uncultured_uncultured **
## Otu0241_Burkholderia.Caballeronia.Paraburkholderia_Burkholderia.Caballeronia.Paraburkholderia *
## Otu0477_Saccharimonadales_ge_Saccharimonadales *
## Otu0748_Chthonomonas_Chthonomonas **
## Otu0439_Spirosoma_Spirosoma **
## Otu0370_uncultured_ge_uncultured **
## Otu0521_JG30.KF.CM45_ge_JG30.KF.CM45 *
## Otu0242_Rickettsiales_Rickettsiales *
## Otu0188_Flavobacterium_Flavobacterium *
## Otu0643_Saccharimonadales_ge_Saccharimonadales **
## Otu0427_Solirubrobacterales_Solirubrobacterales *
## Otu0201_uncultured_uncultured *
## Otu0614_WD2101_soil_group_ge_WD2101_soil_group *
## Otu0804_Pajaroellobacter_Pajaroellobacter *
## Otu0557_Acetobacteraceae_Acetobacteraceae *
## Otu0398_Frankiales_Frankiales *
## Otu0536_Actinoplanes_Actinoplanes *
## Otu0617_1174.901.12_1174.901.12 *
## Otu0402_Nocardioides_Nocardioides *
## Otu0627_Chthoniobacter_Chthoniobacter *
## Otu0669_WD2101_soil_group_ge_WD2101_soil_group *
## Otu0967_Hymenobacter_Hymenobacter *
## Otu0473_Ancylobacter_Ancylobacter *
## Otu0619_Sphingomonas_Sphingomonas *
## Otu0636_Chitinophagaceae_Chitinophagaceae *
## Otu0658_Chloroflexaceae_Chloroflexaceae *
## Otu0715_Saccharimonadales_ge_Saccharimonadales *
## Otu0763_Kineosporiaceae_Kineosporiaceae *
## Otu0797_Chitinophagaceae_Chitinophagaceae *
## Otu0842_Acetobacteraceae_Acetobacteraceae *
## Otu0847_WD2101_soil_group_ge_WD2101_soil_group *
## Otu0875_Armatimonadales_ge_Armatimonadales *
## Otu0892_Aetherobacter_Aetherobacter *
## Otu0898_Isosphaeraceae_Isosphaeraceae *
## Otu1094_Solirubrobacteraceae_Solirubrobacteraceae *
## Otu1220_Roseomonas_Roseomonas *
## Otu1290_Parafilimonas_Parafilimonas *
## Otu0601_Mucilaginibacter_Mucilaginibacter *
## Otu0685_Propionibacteriaceae_Propionibacteriaceae *
## Otu0538_JCM_18997_JCM_18997 *
## Otu0618_Fibrella_Fibrella *
## Otu0596_Chloroflexi_Chloroflexi *
## Otu0745_Hymenobacter_Hymenobacter *
## Otu0463_Rubellimicrobium_Rubellimicrobium *
## Otu0367_Gemmatirosa_Gemmatirosa *
## Otu0532_Geminicoccus_Geminicoccus *
## Otu0280_Saccharimonadales_ge_Saccharimonadales *
## Otu0452_Acetobacteraceae_Acetobacteraceae *
## Otu0453_Candidatus_Udaeobacter_Candidatus_Udaeobacter *
## Otu0495_Nostoc_PCC.73102_Nostoc_PCC.73102 *
## Otu0496_Subgroup_6_ge_Subgroup_6 *
## Otu0547_Nocardioides_Nocardioides *
## Otu0637_BIrii41_ge_BIrii41 *
## Otu0650_Acetobacteraceae_Acetobacteraceae *
## Otu0707_Fimbriimonadaceae_ge_Fimbriimonadaceae *
## Otu0726_Bacteroidia_Bacteroidia *
## Otu0756_uncultured_uncultured *
## Otu0787_Steroidobacter_Steroidobacter *
## Otu0789_Alphaproteobacteria_Alphaproteobacteria *
## Otu0798_Pajaroellobacter_Pajaroellobacter *
## Otu0802_Spirosoma_Spirosoma *
## Otu0823_Sphingobacteriaceae_Sphingobacteriaceae *
## Otu0824_Sphingomonadaceae_Sphingomonadaceae *
## Otu0846_Ferruginibacter_Ferruginibacter *
## Otu0873_Agaricicola_Agaricicola *
## Otu0885_WD2101_soil_group_ge_WD2101_soil_group *
## Otu0901_Spirosoma_Spirosoma *
## Otu0932_Armatimonadales_ge_Armatimonadales *
## Otu0948_WD2101_soil_group_ge_WD2101_soil_group *
## Otu0950_Flavobacterium_Flavobacterium *
## Otu0963_Verrucomicrobiae_Verrucomicrobiae *
## Otu0966_Acetobacteraceae_Acetobacteraceae *
## Otu0987_Chloroflexi_Chloroflexi *
## Otu1006_Pajaroellobacter_Pajaroellobacter *
## Otu1012_Psychroglaciecola_Psychroglaciecola *
## Otu1059_Devosia_Devosia *
## Otu1072_Acidobacteriaceae__Acidobacteriaceae_ *
## Otu1080_Acidibacter_Acidibacter *
## Otu1084_RBG.13.54.9_ge_RBG.13.54.9 *
## Otu1109_Xanthobacteraceae_Xanthobacteraceae *
## Otu1139_Rhodovastum_Rhodovastum *
## Otu1245_Thermoleophilia_Thermoleophilia *
## Otu1246_Isosphaeraceae_Isosphaeraceae *
## Otu1247_Spirosoma_Spirosoma *
## Otu1249_Hymenobacter_Hymenobacter *
## Otu1256_Gemmata_Gemmata *
## Otu1258_Tepidisphaerales_Tepidisphaerales *
## Otu1311_Kaistia_Kaistia *
## Otu1398_Hymenobacter_Hymenobacter *
## Otu1403_Chitinophagaceae_Chitinophagaceae *
## Otu1442_Sphingobacteriaceae_Sphingobacteriaceae *
## Otu1567_Pajaroellobacter_Pajaroellobacter *
## Otu1603_Chitinophagaceae_Chitinophagaceae *
##
## Group TN #sps. 63
## A B stat p.value
## Otu0100_Oxyphotobacteria_Oxyphotobacteria 0.9698 0.9333 0.951 1e-04 ***
## Otu0142_Spirosoma_Spirosoma 0.9580 0.9333 0.946 1e-04 ***
## Otu0094_1174.901.12_1174.901.12 0.9967 0.8667 0.929 1e-04 ***
## Otu0305_Microlunatus_Microlunatus 0.8548 0.9333 0.893 1e-04 ***
## Otu0246_Psychroglaciecola_Psychroglaciecola 0.8280 0.9333 0.879 1e-04 ***
## Otu0219_Acetobacteraceae_Acetobacteraceae 0.9364 0.8000 0.866 1e-04 ***
## Otu0148_Hymenobacter_Hymenobacter 1.0000 0.7333 0.856 1e-04 ***
## Otu0454_Oxyphotobacteria_Oxyphotobacteria 0.8421 0.8667 0.854 1e-04 ***
## Otu0276_Beijerinckiaceae_Beijerinckiaceae 0.8375 0.8667 0.852 1e-04 ***
## Otu0347_Acetobacteraceae_Acetobacteraceae 0.8772 0.8000 0.838 1e-04 ***
## Otu0384_Acetobacteraceae_Acetobacteraceae 0.8704 0.8000 0.834 0.0002 ***
## Otu0210_1174.901.12_1174.901.12 0.9356 0.7333 0.828 1e-04 ***
## Otu0282_1174.901.12_1174.901.12 0.9136 0.7333 0.819 0.0002 ***
## Otu0550_Acetobacteraceae_Acetobacteraceae 0.9655 0.6667 0.802 1e-04 ***
## Otu0292_FBP_ge_FBP 0.8000 0.8000 0.800 0.0016 **
## Otu0332_Acetobacteraceae_Acetobacteraceae 0.8000 0.8000 0.800 0.0002 ***
## Otu0396_Isosphaeraceae_Isosphaeraceae 0.8485 0.7333 0.789 0.0004 ***
## Otu0525_Acetobacteraceae_Acetobacteraceae 0.9070 0.6667 0.778 0.0003 ***
## Otu0488_1174.901.12_1174.901.12 1.0000 0.6000 0.775 0.0003 ***
## Otu0350_Spirosoma_Spirosoma 0.8889 0.6667 0.770 0.0004 ***
## Otu0206_Spirosoma_Spirosoma 0.8842 0.6667 0.768 0.0029 **
## Otu0480_Sphingomonas_Sphingomonas 0.9706 0.6000 0.763 0.0006 ***
## Otu0481_Singulisphaera_Singulisphaera 0.7742 0.7333 0.753 0.0020 **
## Otu0264_Sphingomonas_Sphingomonas 0.8921 0.6000 0.732 0.0044 **
## Otu0392_Spirosoma_Spirosoma 1.0000 0.5333 0.730 0.0005 ***
## Otu0710_Spirosomaceae_Spirosomaceae 0.9474 0.5333 0.711 0.0017 **
## Otu0469_Sphingomonadaceae_Sphingomonadaceae 0.7419 0.6667 0.703 0.0025 **
## Otu0315_Nocardiaceae_Nocardiaceae 0.9157 0.5333 0.699 0.0025 **
## Otu1013_Frankiales_Frankiales 1.0000 0.4667 0.683 0.0011 **
## Otu0381_Chthonomonas_Chthonomonas 0.8537 0.5333 0.675 0.0197 *
## Otu0611_Acetobacteraceae_Acetobacteraceae 0.9677 0.4667 0.672 0.0017 **
## Otu0414_Acidiphilium_Acidiphilium 0.7368 0.6000 0.665 0.0143 *
## Otu0746_Methylobacterium_Methylobacterium 0.9474 0.4667 0.665 0.0038 **
## Otu0356_Acidobacteriaceae__Acidobacteriaceae_ 1.0000 0.4000 0.632 0.0049 **
## Otu0523_Acetobacteraceae_Acetobacteraceae 1.0000 0.4000 0.632 0.0043 **
## Otu0723_Fimbriimonadaceae_ge_Fimbriimonadaceae 1.0000 0.4000 0.632 0.0045 **
## Otu0744_Deinococcus_Deinococcus 0.8571 0.4667 0.632 0.0059 **
## Otu0747_Verrucomicrobiae_Verrucomicrobiae 1.0000 0.4000 0.632 0.0042 **
## Otu0772_Saccharimonadales_ge_Saccharimonadales 1.0000 0.4000 0.632 0.0050 **
## Otu0825_Hymenobacter_Hymenobacter 1.0000 0.4000 0.632 0.0037 **
## Otu0359_Micrococcales_Micrococcales 0.9756 0.4000 0.625 0.0071 **
## Otu0648_Acidobacteriaceae__Acidobacteriaceae_ 0.9630 0.4000 0.621 0.0115 *
## Otu0509_Rhizobiales_Rhizobiales 0.9444 0.4000 0.615 0.0124 *
## Otu0628_Propionibacteriales_Propionibacteriales 0.8800 0.4000 0.593 0.0385 *
## Otu0605_Angustibacter_Angustibacter 0.7500 0.4667 0.592 0.0221 *
## Otu0515_Sphingomonadaceae_Sphingomonadaceae 0.8621 0.4000 0.587 0.0408 *
## Otu0808_Acidiphilium_Acidiphilium 1.0000 0.3333 0.577 0.0210 *
## Otu0993_1174.901.12_1174.901.12 1.0000 0.3333 0.577 0.0151 *
## Otu0998_uncultured_uncultured 1.0000 0.3333 0.577 0.0161 *
## Otu1044_Chthoniobacterales_Chthoniobacterales 1.0000 0.3333 0.577 0.0171 *
## Otu1057_Singulisphaera_Singulisphaera 1.0000 0.3333 0.577 0.0173 *
## Otu1204_Hymenobacter_Hymenobacter 1.0000 0.3333 0.577 0.0170 *
## Otu0839_Saccharimonadales_ge_Saccharimonadales 0.7692 0.4000 0.555 0.0485 *
## Otu0852_Frankiales_Frankiales 0.7692 0.4000 0.555 0.0267 *
## Otu0792_Micavibrio_Micavibrio 0.9167 0.3333 0.553 0.0288 *
## Otu0708_Bryocella_Bryocella 0.8800 0.3333 0.542 0.0352 *
## Otu0497_Dyadobacter_Dyadobacter 0.8710 0.3333 0.539 0.0480 *
## Otu0728_Chitinophagaceae_Chitinophagaceae 0.8667 0.3333 0.537 0.0457 *
## Otu0738_Proteobacteria_Proteobacteria 0.8667 0.3333 0.537 0.0375 *
## Otu0924_Larkinella_Larkinella 1.0000 0.2667 0.516 0.0406 *
## Otu0976_Beijerinckiaceae_Beijerinckiaceae 1.0000 0.2667 0.516 0.0333 *
## Otu1190_Sphingomonas_Sphingomonas 1.0000 0.2667 0.516 0.0323 *
## Otu1429_Hymenobacter_Hymenobacter 1.0000 0.2667 0.516 0.0395 *
##
## Group WA #sps. 61
## A B stat p.value
## Otu0003_Sphingomonas_Sphingomonas 0.9911 1.0000 0.996 1e-04
## Otu0024_Hymenobacter_Hymenobacter 0.9888 1.0000 0.994 1e-04
## Otu0028_Hymenobacter_Hymenobacter 0.9840 1.0000 0.992 1e-04
## Otu0069_Acidiphilium_Acidiphilium 0.9817 1.0000 0.991 1e-04
## Otu0004_Burkholderiaceae_Burkholderiaceae 0.9796 1.0000 0.990 1e-04
## Otu0078_Massilia_Massilia 0.9753 1.0000 0.988 1e-04
## Otu0025_Methylobacterium_Methylobacterium 0.9677 1.0000 0.984 1e-04
## Otu0058_Deinococcus_Deinococcus 0.9537 1.0000 0.977 1e-04
## Otu0089_FBP_ge_FBP 0.9284 1.0000 0.964 1e-04
## Otu0043_Microbacteriaceae_Microbacteriaceae 0.9028 1.0000 0.950 1e-04
## Otu0017_Pseudomonas_Pseudomonas 0.9018 1.0000 0.950 1e-04
## Otu0085_Spirosomaceae_Spirosomaceae 1.0000 0.9000 0.949 1e-04
## Otu0177_Acetobacteraceae_Acetobacteraceae 1.0000 0.9000 0.949 1e-04
## Otu0196_Hymenobacter_Hymenobacter 1.0000 0.9000 0.949 1e-04
## Otu0046_Kineococcus_Kineococcus 0.8906 1.0000 0.944 1e-04
## Otu0151_Sphingomonadaceae_Sphingomonadaceae 0.9759 0.9000 0.937 1e-04
## Otu0092_Nakamurella_Nakamurella 0.8425 1.0000 0.918 0.0002
## Otu0304_Hymenobacter_Hymenobacter 0.9669 0.8000 0.880 1e-04
## Otu0319_Burkholderiaceae_Burkholderiaceae 0.9623 0.8000 0.877 1e-04
## Otu0009_Halotalea_Halotalea 1.0000 0.7000 0.837 1e-04
## Otu0535_Hymenobacter_Hymenobacter 1.0000 0.7000 0.837 1e-04
## Otu0309_Sphingomonas_Sphingomonas 0.9706 0.7000 0.824 1e-04
## Otu0107_Dyadobacter_Dyadobacter 0.8486 0.8000 0.824 1e-04
## Otu0375_Patulibacter_Patulibacter 0.9048 0.7000 0.796 1e-04
## Otu0700_uncultured_uncultured 1.0000 0.6000 0.775 0.0002
## Otu0923_Hymenobacter_Hymenobacter 1.0000 0.6000 0.775 0.0002
## Otu0014_Rhizobiaceae_Rhizobiaceae 0.9810 0.6000 0.767 0.0029
## Otu0096_D05.2_ge_D05.2 0.8165 0.7000 0.756 0.0006
## Otu0055_Pedobacter_Pedobacter 0.8036 0.7000 0.750 0.0008
## Otu0016_Micrococcales_Micrococcales 0.9295 0.6000 0.747 0.0006
## Otu0057_Azotobacter_Azotobacter 0.6628 0.8000 0.728 0.0150
## Otu0326_Sphingomonadaceae_Sphingomonadaceae 0.8478 0.6000 0.713 0.0004
## Otu0406_Roseomonas_Roseomonas 0.7241 0.7000 0.712 0.0022
## Otu0149_Rhodococcus_Rhodococcus 1.0000 0.5000 0.707 0.0005
## Otu0470_Massilia_Massilia 1.0000 0.5000 0.707 0.0005
## Otu0489_Sphingobacteriaceae_Sphingobacteriaceae 1.0000 0.5000 0.707 0.0006
## Otu0564_Rhizorhapis_Rhizorhapis 1.0000 0.5000 0.707 0.0003
## Otu0739_Burkholderiaceae_Burkholderiaceae 1.0000 0.5000 0.707 0.0003
## Otu0918_Burkholderiaceae_Burkholderiaceae 1.0000 0.5000 0.707 0.0007
## Otu0161_Pedobacter_Pedobacter 0.9813 0.5000 0.700 0.0005
## Otu0372_Massilia_Massilia 0.8571 0.5000 0.655 0.0026
## Otu0574_FBP_ge_FBP 0.8333 0.5000 0.645 0.0018
## Otu0390_Roseomonas_Roseomonas 0.8077 0.5000 0.635 0.0078
## Otu0475_Hymenobacter_Hymenobacter 1.0000 0.4000 0.632 0.0029
## Otu0677_Hymenobacter_Hymenobacter 1.0000 0.4000 0.632 0.0019
## Otu0845_Burkholderiaceae_Burkholderiaceae 1.0000 0.4000 0.632 0.0022
## Otu0941_Hymenobacter_Hymenobacter 1.0000 0.4000 0.632 0.0013
## Otu0573_Angustibacter_Angustibacter 0.9623 0.4000 0.620 0.0055
## Otu0331_Spirosoma_Spirosoma 0.7500 0.5000 0.612 0.0108
## Otu1097_Proteobacteria_Proteobacteria 0.7895 0.4000 0.562 0.0175
## Otu0324_Deinococcaceae_Deinococcaceae 1.0000 0.3000 0.548 0.0139
## Otu0719_uncultured_uncultured 1.0000 0.3000 0.548 0.0112
## Otu0796_Hymenobacter_Hymenobacter 1.0000 0.3000 0.548 0.0143
## Otu0928_Saccharimonadaceae_ge_Saccharimonadaceae 1.0000 0.3000 0.548 0.0130
## Otu1203_Proteobacteria_Proteobacteria 1.0000 0.3000 0.548 0.0115
## Otu1702_Hymenobacter_Hymenobacter 1.0000 0.3000 0.548 0.0130
## Otu0553_Sphingomonas_Sphingomonas 0.7241 0.4000 0.538 0.0419
## Otu0642_Micrococcales_Micrococcales 0.9231 0.3000 0.526 0.0203
## Otu0895_Pseudomonas_Pseudomonas 0.9130 0.3000 0.523 0.0292
## Otu0921_Hymenobacter_Hymenobacter 0.9000 0.3000 0.520 0.0199
## Otu0379_Hymenobacter_Hymenobacter 0.8667 0.3000 0.510 0.0358
##
## Otu0003_Sphingomonas_Sphingomonas ***
## Otu0024_Hymenobacter_Hymenobacter ***
## Otu0028_Hymenobacter_Hymenobacter ***
## Otu0069_Acidiphilium_Acidiphilium ***
## Otu0004_Burkholderiaceae_Burkholderiaceae ***
## Otu0078_Massilia_Massilia ***
## Otu0025_Methylobacterium_Methylobacterium ***
## Otu0058_Deinococcus_Deinococcus ***
## Otu0089_FBP_ge_FBP ***
## Otu0043_Microbacteriaceae_Microbacteriaceae ***
## Otu0017_Pseudomonas_Pseudomonas ***
## Otu0085_Spirosomaceae_Spirosomaceae ***
## Otu0177_Acetobacteraceae_Acetobacteraceae ***
## Otu0196_Hymenobacter_Hymenobacter ***
## Otu0046_Kineococcus_Kineococcus ***
## Otu0151_Sphingomonadaceae_Sphingomonadaceae ***
## Otu0092_Nakamurella_Nakamurella ***
## Otu0304_Hymenobacter_Hymenobacter ***
## Otu0319_Burkholderiaceae_Burkholderiaceae ***
## Otu0009_Halotalea_Halotalea ***
## Otu0535_Hymenobacter_Hymenobacter ***
## Otu0309_Sphingomonas_Sphingomonas ***
## Otu0107_Dyadobacter_Dyadobacter ***
## Otu0375_Patulibacter_Patulibacter ***
## Otu0700_uncultured_uncultured ***
## Otu0923_Hymenobacter_Hymenobacter ***
## Otu0014_Rhizobiaceae_Rhizobiaceae **
## Otu0096_D05.2_ge_D05.2 ***
## Otu0055_Pedobacter_Pedobacter ***
## Otu0016_Micrococcales_Micrococcales ***
## Otu0057_Azotobacter_Azotobacter *
## Otu0326_Sphingomonadaceae_Sphingomonadaceae ***
## Otu0406_Roseomonas_Roseomonas **
## Otu0149_Rhodococcus_Rhodococcus ***
## Otu0470_Massilia_Massilia ***
## Otu0489_Sphingobacteriaceae_Sphingobacteriaceae ***
## Otu0564_Rhizorhapis_Rhizorhapis ***
## Otu0739_Burkholderiaceae_Burkholderiaceae ***
## Otu0918_Burkholderiaceae_Burkholderiaceae ***
## Otu0161_Pedobacter_Pedobacter ***
## Otu0372_Massilia_Massilia **
## Otu0574_FBP_ge_FBP **
## Otu0390_Roseomonas_Roseomonas **
## Otu0475_Hymenobacter_Hymenobacter **
## Otu0677_Hymenobacter_Hymenobacter **
## Otu0845_Burkholderiaceae_Burkholderiaceae **
## Otu0941_Hymenobacter_Hymenobacter **
## Otu0573_Angustibacter_Angustibacter **
## Otu0331_Spirosoma_Spirosoma *
## Otu1097_Proteobacteria_Proteobacteria *
## Otu0324_Deinococcaceae_Deinococcaceae *
## Otu0719_uncultured_uncultured *
## Otu0796_Hymenobacter_Hymenobacter *
## Otu0928_Saccharimonadaceae_ge_Saccharimonadaceae *
## Otu1203_Proteobacteria_Proteobacteria *
## Otu1702_Hymenobacter_Hymenobacter *
## Otu0553_Sphingomonas_Sphingomonas *
## Otu0642_Micrococcales_Micrococcales *
## Otu0895_Pseudomonas_Pseudomonas *
## Otu0921_Hymenobacter_Hymenobacter *
## Otu0379_Hymenobacter_Hymenobacter *
##
## Group IN+TN #sps. 154
## A B stat
## Otu0008_Actinomycetospora_Actinomycetospora 1.0000 1.0000 1.000
## Otu0063_Labrys_Labrys 1.0000 1.0000 1.000
## Otu0066_Verrucomicrobiae_Verrucomicrobiae 1.0000 1.0000 1.000
## Otu0033_Micromonosporaceae_Micromonosporaceae 0.9956 1.0000 0.998
## Otu0035_Methylobacterium_Methylobacterium 0.9953 1.0000 0.998
## Otu0080_Solirubrobacter_Solirubrobacter 0.9934 1.0000 0.997
## Otu0060_Sphingomonadaceae_Sphingomonadaceae 0.9916 1.0000 0.996
## Otu0026_Psychroglaciecola_Psychroglaciecola 0.9907 1.0000 0.995
## Otu0029_Actinomycetospora_Actinomycetospora 1.0000 0.9667 0.983
## Otu0040_Solirubrobacteraceae_Solirubrobacteraceae 1.0000 0.9667 0.983
## Otu0050_Blastocatella_Blastocatella 1.0000 0.9667 0.983
## Otu0051_uncultured_uncultured 1.0000 0.9667 0.983
## Otu0059_Acidiphilium_Acidiphilium 1.0000 0.9667 0.983
## Otu0132_Beijerinckiaceae_Beijerinckiaceae 1.0000 0.9667 0.983
## Otu0073_Caulobacteraceae_Caulobacteraceae 0.9839 0.9667 0.975
## Otu0032_Amnibacterium_Amnibacterium 0.9476 1.0000 0.973
## Otu0118_Marmoricola_Marmoricola 0.9684 0.9667 0.968
## Otu0012_Candidatus_Phytoplasma_Candidatus_Phytoplasma 1.0000 0.9333 0.966
## Otu0101_Sphingomonadaceae_Sphingomonadaceae 1.0000 0.9333 0.966
## Otu0123_Fimbriimonadaceae_Fimbriimonadaceae 1.0000 0.9333 0.966
## Otu0112_Belnapia_Belnapia 0.9910 0.9333 0.962
## Otu0070_Sphingomonadaceae_Sphingomonadaceae 0.9510 0.9667 0.959
## Otu0137_Beijerinckiaceae_Beijerinckiaceae 0.9792 0.9333 0.956
## Otu0023_Actinobacteria_Actinobacteria 1.0000 0.9000 0.949
## Otu0072_Craurococcus_Craurococcus 1.0000 0.9000 0.949
## Otu0120_Chitinophagaceae_Chitinophagaceae 1.0000 0.9000 0.949
## Otu0131_Alphaproteobacteria_Alphaproteobacteria 1.0000 0.9000 0.949
## Otu0191_Armatimonadales_ge_Armatimonadales 1.0000 0.9000 0.949
## Otu0283_Armatimonadales_ge_Armatimonadales 1.0000 0.9000 0.949
## Otu0065_Sphingomonadaceae_Sphingomonadaceae 0.9950 0.9000 0.946
## Otu0077_Methylobacterium_Methylobacterium 0.9507 0.9333 0.942
## Otu0093_Chitinophagaceae_Chitinophagaceae 0.9858 0.9000 0.942
## Otu0175_Solirubrobacteraceae_Solirubrobacteraceae 0.9487 0.9333 0.941
## Otu0071_Spirosoma_Spirosoma 1.0000 0.8667 0.931
## Otu0084_67.14_ge_67.14 1.0000 0.8667 0.931
## Otu0090_1174.901.12_1174.901.12 1.0000 0.8667 0.931
## Otu0095_Solirubrobacter_Solirubrobacter 1.0000 0.8667 0.931
## Otu0163_Sphingomonadaceae_Sphingomonadaceae 1.0000 0.8667 0.931
## Otu0164_Spirosoma_Spirosoma 1.0000 0.8667 0.931
## Otu0166_uncultured_uncultured 1.0000 0.8667 0.931
## Otu0199_Methylobacterium_Methylobacterium 1.0000 0.8667 0.931
## Otu0216_Quadrisphaera_Quadrisphaera 1.0000 0.8667 0.931
## Otu0231_Frankiales_Frankiales 1.0000 0.8667 0.931
## Otu0074_Sphingomonadaceae_Sphingomonadaceae 0.9901 0.8667 0.926
## Otu0110_Burkholderiaceae_Burkholderiaceae 0.9890 0.8667 0.926
## Otu0138_Sphingomonadaceae_Sphingomonadaceae 0.9779 0.8667 0.921
## Otu0124_Geodermatophilus_Geodermatophilus 0.9263 0.9000 0.913
## Otu0097_Actinobacteria_Actinobacteria 1.0000 0.8333 0.913
## Otu0105_Spirosoma_Spirosoma 1.0000 0.8333 0.913
## Otu0146_Geodermatophilaceae_Geodermatophilaceae 1.0000 0.8333 0.913
## Otu0150_Nocardioides_Nocardioides 1.0000 0.8333 0.913
## Otu0158_Fimbriimonadaceae_ge_Fimbriimonadaceae 1.0000 0.8333 0.913
## Otu0197_Methylobacterium_Methylobacterium 1.0000 0.8333 0.913
## Otu0225_Fimbriimonadales_Fimbriimonadales 1.0000 0.8333 0.913
## Otu0269_uncultured_uncultured 1.0000 0.8333 0.913
## Otu0134_Terriglobus_Terriglobus 0.9580 0.8667 0.911
## Otu0147_FBP_ge_FBP 0.9130 0.9000 0.906
## Otu0104_Microlunatus_Microlunatus 1.0000 0.8000 0.894
## Otu0181_Sphingomonadaceae_Sphingomonadaceae 1.0000 0.8000 0.894
## Otu0224_Fimbriimonadaceae_ge_Fimbriimonadaceae 1.0000 0.8000 0.894
## Otu0233_Methylobacterium_Methylobacterium 1.0000 0.8000 0.894
## Otu0294_Burkholderiaceae_Burkholderiaceae 1.0000 0.8000 0.894
## Otu0126_Devosiaceae_Devosiaceae 0.9492 0.8333 0.889
## Otu0127_Sphingomonadaceae_Sphingomonadaceae 0.9822 0.8000 0.886
## Otu0041_Aureimonas_Aureimonas 0.8398 0.9333 0.885
## Otu0130_Spirosomaceae_Spirosomaceae 1.0000 0.7667 0.876
## Otu0133_Aureimonas_Aureimonas 1.0000 0.7667 0.876
## Otu0143_Beijerinckiaceae_Beijerinckiaceae 1.0000 0.7667 0.876
## Otu0214_Chloroflexi_Chloroflexi 1.0000 0.7667 0.876
## Otu0237_Chthoniobacterales_Chthoniobacterales 1.0000 0.7667 0.876
## Otu0103_Frankiales_Frankiales 0.9643 0.7667 0.860
## Otu0125_Chitinophagaceae_Chitinophagaceae 1.0000 0.7333 0.856
## Otu0195_Acetobacteraceae_Acetobacteraceae 1.0000 0.7333 0.856
## Otu0200_Ellin6055_Ellin6055 1.0000 0.7333 0.856
## Otu0286_Ellin6055_Ellin6055 1.0000 0.7333 0.856
## Otu0376_Jatrophihabitans_Jatrophihabitans 1.0000 0.7333 0.856
## Otu0141_1174.901.12_1174.901.12 0.9449 0.7667 0.851
## Otu0259_Nocardioides_Nocardioides 0.9725 0.7333 0.844
## Otu0122_Janibacter_Janibacter 1.0000 0.7000 0.837
## Otu0190_uncultured_uncultured 1.0000 0.7000 0.837
## Otu0205_Jatrophihabitans_Jatrophihabitans 1.0000 0.7000 0.837
## Otu0341_Sphingomonas_Sphingomonas 1.0000 0.7000 0.837
## Otu0419_Beijerinckiaceae_Beijerinckiaceae 1.0000 0.7000 0.837
## Otu0083_Micromonosporaceae_Micromonosporaceae 0.9928 0.7000 0.834
## Otu0248_Bradyrhizobium_Bradyrhizobium 0.9684 0.7000 0.823
## Otu0217_Flavitalea_Flavitalea 1.0000 0.6667 0.816
## Otu0245_Phaselicystis_Phaselicystis 1.0000 0.6667 0.816
## Otu0270_Chthoniobacter_Chthoniobacter 1.0000 0.6667 0.816
## Otu0229_Hymenobacter_Hymenobacter 0.9171 0.7000 0.801
## Otu0325_Sphingomonadaceae_Sphingomonadaceae 0.8696 0.7333 0.799
## Otu0189_Methylobacterium_Methylobacterium 1.0000 0.6333 0.796
## Otu0298_FBP_ge_FBP 1.0000 0.6333 0.796
## Otu0302_Chitinophagaceae_Chitinophagaceae 1.0000 0.6333 0.796
## Otu0307_Nocardioides_Nocardioides 1.0000 0.6333 0.796
## Otu0313_Chloroflexales_Chloroflexales 1.0000 0.6333 0.796
## Otu0322_Chthoniobacter_Chthoniobacter 1.0000 0.6333 0.796
## Otu0338_Actinobacteria_Actinobacteria 1.0000 0.6333 0.796
## Otu0393_Hymenobacter_Hymenobacter 1.0000 0.6333 0.796
## Otu0249_Mucilaginibacter_Mucilaginibacter 0.9684 0.6333 0.783
## Otu0265_Sphingomonadaceae_Sphingomonadaceae 0.9143 0.6667 0.781
## Otu0240_Rubellimicrobium_Rubellimicrobium 1.0000 0.6000 0.775
## Otu0306_Blastococcus_Blastococcus 1.0000 0.6000 0.775
## Otu0310_Spirosoma_Spirosoma 1.0000 0.6000 0.775
## Otu0311_Methylopilaceae_Methylopilaceae 1.0000 0.6000 0.775
## Otu0318_Caulobacter_Caulobacter 1.0000 0.6000 0.775
## Otu0395_Candidatus_Alysiosphaera_Candidatus_Alysiosphaera 1.0000 0.6000 0.775
## Otu0416_Tepidisphaera_Tepidisphaera 1.0000 0.6000 0.775
## Otu0437_Fimbriimonadaceae_ge_Fimbriimonadaceae 1.0000 0.6000 0.775
## Otu0222_Parafilimonas_Parafilimonas 1.0000 0.5667 0.753
## Otu0244_Chitinophagaceae_Chitinophagaceae 1.0000 0.5667 0.753
## Otu0263_Blastocatella_Blastocatella 1.0000 0.5667 0.753
## Otu0279_Geodermatophilus_Geodermatophilus 1.0000 0.5667 0.753
## Otu0287_Segetibacter_Segetibacter 1.0000 0.5667 0.753
## Otu0321_Sphingomonas_Sphingomonas 1.0000 0.5667 0.753
## Otu0357_Verrucomicrobiae_Verrucomicrobiae 1.0000 0.5667 0.753
## Otu0361_Frankiales_Frankiales 1.0000 0.5667 0.753
## Otu0362_Tepidisphaeraceae_ge_Tepidisphaeraceae 1.0000 0.5667 0.753
## Otu0365_Flavisolibacter_Flavisolibacter 1.0000 0.5667 0.753
## Otu0447_Conexibacter_Conexibacter 1.0000 0.5667 0.753
## Otu0461_Verrucomicrobiae_Verrucomicrobiae 1.0000 0.5667 0.753
## Otu0234_Spirosoma_Spirosoma 0.9796 0.5667 0.745
## Otu0268_1174.901.12_1174.901.12 0.9577 0.5667 0.737
## Otu0119_Spirosoma_Spirosoma 1.0000 0.5333 0.730
## Otu0170_Actinobacteria_Actinobacteria 1.0000 0.5333 0.730
## Otu0291_D05.2_ge_D05.2 1.0000 0.5333 0.730
## Otu0474_Chthoniobacterales_Chthoniobacterales 1.0000 0.5333 0.730
## Otu0156_Flavisolibacter_Flavisolibacter 0.9869 0.5333 0.725
## Otu0202_Polyangiaceae_Polyangiaceae 1.0000 0.5000 0.707
## Otu0274_Gemmatirosa_Gemmatirosa 1.0000 0.5000 0.707
## Otu0300_Novosphingobium_Novosphingobium 1.0000 0.5000 0.707
## Otu0316_C0119_ge_C0119 1.0000 0.5000 0.707
## Otu0380_Roseomonas_Roseomonas 1.0000 0.5000 0.707
## Otu0401_Sphingomonadaceae_Sphingomonadaceae 1.0000 0.5000 0.707
## Otu0432_Roseomonas_Roseomonas 1.0000 0.5000 0.707
## Otu0438_AKIW781_ge_AKIW781 1.0000 0.5000 0.707
## Otu0456_Armatimonadales_ge_Armatimonadales 1.0000 0.5000 0.707
## Otu0340_Acidobacteriaceae__Acidobacteriaceae_ 1.0000 0.4667 0.683
## Otu0355_1174.901.12_1174.901.12 1.0000 0.4667 0.683
## Otu0428_Sphingomonas_Sphingomonas 1.0000 0.4667 0.683
## Otu0545_Chitinophagaceae_Chitinophagaceae 1.0000 0.4667 0.683
## Otu0351_Rubrivirga_Rubrivirga 1.0000 0.4333 0.658
## Otu0373_Chitinophagaceae_Chitinophagaceae 1.0000 0.4333 0.658
## Otu0388_Beijerinckiaceae_Beijerinckiaceae 1.0000 0.4333 0.658
## Otu0434_JG30.KF.CM45_ge_JG30.KF.CM45 1.0000 0.4333 0.658
## Otu0442_Chthoniobacter_Chthoniobacter 1.0000 0.4333 0.658
## Otu0516_Gemmataceae_Gemmataceae 1.0000 0.4333 0.658
## Otu0552_Acetobacteraceae_Acetobacteraceae 1.0000 0.4333 0.658
## Otu0559_Acetobacteraceae_Acetobacteraceae 1.0000 0.4333 0.658
## Otu0584_Saccharimonadales_ge_Saccharimonadales 1.0000 0.4333 0.658
## Otu0383_Spirosoma_Spirosoma 1.0000 0.4000 0.632
## Otu0429_Spirosoma_Spirosoma 1.0000 0.4000 0.632
## Otu0485_Caulobacter_Caulobacter 1.0000 0.4000 0.632
## Otu0551_Acinetobacter_Acinetobacter 1.0000 0.4000 0.632
## Otu0586_Rhizobiales_Rhizobiales 1.0000 0.4000 0.632
## p.value
## Otu0008_Actinomycetospora_Actinomycetospora 1e-04 ***
## Otu0063_Labrys_Labrys 1e-04 ***
## Otu0066_Verrucomicrobiae_Verrucomicrobiae 1e-04 ***
## Otu0033_Micromonosporaceae_Micromonosporaceae 1e-04 ***
## Otu0035_Methylobacterium_Methylobacterium 1e-04 ***
## Otu0080_Solirubrobacter_Solirubrobacter 1e-04 ***
## Otu0060_Sphingomonadaceae_Sphingomonadaceae 1e-04 ***
## Otu0026_Psychroglaciecola_Psychroglaciecola 1e-04 ***
## Otu0029_Actinomycetospora_Actinomycetospora 1e-04 ***
## Otu0040_Solirubrobacteraceae_Solirubrobacteraceae 1e-04 ***
## Otu0050_Blastocatella_Blastocatella 1e-04 ***
## Otu0051_uncultured_uncultured 1e-04 ***
## Otu0059_Acidiphilium_Acidiphilium 1e-04 ***
## Otu0132_Beijerinckiaceae_Beijerinckiaceae 1e-04 ***
## Otu0073_Caulobacteraceae_Caulobacteraceae 1e-04 ***
## Otu0032_Amnibacterium_Amnibacterium 1e-04 ***
## Otu0118_Marmoricola_Marmoricola 1e-04 ***
## Otu0012_Candidatus_Phytoplasma_Candidatus_Phytoplasma 1e-04 ***
## Otu0101_Sphingomonadaceae_Sphingomonadaceae 1e-04 ***
## Otu0123_Fimbriimonadaceae_Fimbriimonadaceae 1e-04 ***
## Otu0112_Belnapia_Belnapia 1e-04 ***
## Otu0070_Sphingomonadaceae_Sphingomonadaceae 1e-04 ***
## Otu0137_Beijerinckiaceae_Beijerinckiaceae 1e-04 ***
## Otu0023_Actinobacteria_Actinobacteria 1e-04 ***
## Otu0072_Craurococcus_Craurococcus 1e-04 ***
## Otu0120_Chitinophagaceae_Chitinophagaceae 1e-04 ***
## Otu0131_Alphaproteobacteria_Alphaproteobacteria 1e-04 ***
## Otu0191_Armatimonadales_ge_Armatimonadales 1e-04 ***
## Otu0283_Armatimonadales_ge_Armatimonadales 1e-04 ***
## Otu0065_Sphingomonadaceae_Sphingomonadaceae 1e-04 ***
## Otu0077_Methylobacterium_Methylobacterium 1e-04 ***
## Otu0093_Chitinophagaceae_Chitinophagaceae 1e-04 ***
## Otu0175_Solirubrobacteraceae_Solirubrobacteraceae 1e-04 ***
## Otu0071_Spirosoma_Spirosoma 1e-04 ***
## Otu0084_67.14_ge_67.14 1e-04 ***
## Otu0090_1174.901.12_1174.901.12 1e-04 ***
## Otu0095_Solirubrobacter_Solirubrobacter 1e-04 ***
## Otu0163_Sphingomonadaceae_Sphingomonadaceae 1e-04 ***
## Otu0164_Spirosoma_Spirosoma 1e-04 ***
## Otu0166_uncultured_uncultured 1e-04 ***
## Otu0199_Methylobacterium_Methylobacterium 1e-04 ***
## Otu0216_Quadrisphaera_Quadrisphaera 1e-04 ***
## Otu0231_Frankiales_Frankiales 1e-04 ***
## Otu0074_Sphingomonadaceae_Sphingomonadaceae 1e-04 ***
## Otu0110_Burkholderiaceae_Burkholderiaceae 0.0002 ***
## Otu0138_Sphingomonadaceae_Sphingomonadaceae 0.0002 ***
## Otu0124_Geodermatophilus_Geodermatophilus 0.0014 **
## Otu0097_Actinobacteria_Actinobacteria 0.0002 ***
## Otu0105_Spirosoma_Spirosoma 0.0002 ***
## Otu0146_Geodermatophilaceae_Geodermatophilaceae 1e-04 ***
## Otu0150_Nocardioides_Nocardioides 1e-04 ***
## Otu0158_Fimbriimonadaceae_ge_Fimbriimonadaceae 1e-04 ***
## Otu0197_Methylobacterium_Methylobacterium 1e-04 ***
## Otu0225_Fimbriimonadales_Fimbriimonadales 1e-04 ***
## Otu0269_uncultured_uncultured 1e-04 ***
## Otu0134_Terriglobus_Terriglobus 1e-04 ***
## Otu0147_FBP_ge_FBP 0.0003 ***
## Otu0104_Microlunatus_Microlunatus 1e-04 ***
## Otu0181_Sphingomonadaceae_Sphingomonadaceae 1e-04 ***
## Otu0224_Fimbriimonadaceae_ge_Fimbriimonadaceae 0.0002 ***
## Otu0233_Methylobacterium_Methylobacterium 1e-04 ***
## Otu0294_Burkholderiaceae_Burkholderiaceae 1e-04 ***
## Otu0126_Devosiaceae_Devosiaceae 0.0006 ***
## Otu0127_Sphingomonadaceae_Sphingomonadaceae 0.0006 ***
## Otu0041_Aureimonas_Aureimonas 0.0014 **
## Otu0130_Spirosomaceae_Spirosomaceae 1e-04 ***
## Otu0133_Aureimonas_Aureimonas 0.0002 ***
## Otu0143_Beijerinckiaceae_Beijerinckiaceae 1e-04 ***
## Otu0214_Chloroflexi_Chloroflexi 0.0002 ***
## Otu0237_Chthoniobacterales_Chthoniobacterales 0.0002 ***
## Otu0103_Frankiales_Frankiales 0.0021 **
## Otu0125_Chitinophagaceae_Chitinophagaceae 0.0002 ***
## Otu0195_Acetobacteraceae_Acetobacteraceae 0.0002 ***
## Otu0200_Ellin6055_Ellin6055 0.0004 ***
## Otu0286_Ellin6055_Ellin6055 0.0003 ***
## Otu0376_Jatrophihabitans_Jatrophihabitans 0.0002 ***
## Otu0141_1174.901.12_1174.901.12 0.0070 **
## Otu0259_Nocardioides_Nocardioides 0.0006 ***
## Otu0122_Janibacter_Janibacter 0.0002 ***
## Otu0190_uncultured_uncultured 0.0002 ***
## Otu0205_Jatrophihabitans_Jatrophihabitans 0.0003 ***
## Otu0341_Sphingomonas_Sphingomonas 0.0007 ***
## Otu0419_Beijerinckiaceae_Beijerinckiaceae 1e-04 ***
## Otu0083_Micromonosporaceae_Micromonosporaceae 0.0021 **
## Otu0248_Bradyrhizobium_Bradyrhizobium 0.0010 ***
## Otu0217_Flavitalea_Flavitalea 0.0004 ***
## Otu0245_Phaselicystis_Phaselicystis 0.0009 ***
## Otu0270_Chthoniobacter_Chthoniobacter 0.0008 ***
## Otu0229_Hymenobacter_Hymenobacter 0.0099 **
## Otu0325_Sphingomonadaceae_Sphingomonadaceae 0.0099 **
## Otu0189_Methylobacterium_Methylobacterium 0.0030 **
## Otu0298_FBP_ge_FBP 0.0011 **
## Otu0302_Chitinophagaceae_Chitinophagaceae 0.0010 ***
## Otu0307_Nocardioides_Nocardioides 0.0009 ***
## Otu0313_Chloroflexales_Chloroflexales 0.0018 **
## Otu0322_Chthoniobacter_Chthoniobacter 0.0011 **
## Otu0338_Actinobacteria_Actinobacteria 0.0014 **
## Otu0393_Hymenobacter_Hymenobacter 0.0017 **
## Otu0249_Mucilaginibacter_Mucilaginibacter 0.0050 **
## Otu0265_Sphingomonadaceae_Sphingomonadaceae 0.0162 *
## Otu0240_Rubellimicrobium_Rubellimicrobium 0.0029 **
## Otu0306_Blastococcus_Blastococcus 0.0024 **
## Otu0310_Spirosoma_Spirosoma 0.0028 **
## Otu0311_Methylopilaceae_Methylopilaceae 0.0030 **
## Otu0318_Caulobacter_Caulobacter 0.0026 **
## Otu0395_Candidatus_Alysiosphaera_Candidatus_Alysiosphaera 0.0025 **
## Otu0416_Tepidisphaera_Tepidisphaera 0.0026 **
## Otu0437_Fimbriimonadaceae_ge_Fimbriimonadaceae 0.0028 **
## Otu0222_Parafilimonas_Parafilimonas 0.0034 **
## Otu0244_Chitinophagaceae_Chitinophagaceae 0.0053 **
## Otu0263_Blastocatella_Blastocatella 0.0076 **
## Otu0279_Geodermatophilus_Geodermatophilus 0.0085 **
## Otu0287_Segetibacter_Segetibacter 0.0067 **
## Otu0321_Sphingomonas_Sphingomonas 0.0058 **
## Otu0357_Verrucomicrobiae_Verrucomicrobiae 0.0046 **
## Otu0361_Frankiales_Frankiales 0.0051 **
## Otu0362_Tepidisphaeraceae_ge_Tepidisphaeraceae 0.0029 **
## Otu0365_Flavisolibacter_Flavisolibacter 0.0041 **
## Otu0447_Conexibacter_Conexibacter 0.0032 **
## Otu0461_Verrucomicrobiae_Verrucomicrobiae 0.0043 **
## Otu0234_Spirosoma_Spirosoma 0.0175 *
## Otu0268_1174.901.12_1174.901.12 0.0168 *
## Otu0119_Spirosoma_Spirosoma 0.0252 *
## Otu0170_Actinobacteria_Actinobacteria 0.0068 **
## Otu0291_D05.2_ge_D05.2 0.0077 **
## Otu0474_Chthoniobacterales_Chthoniobacterales 0.0041 **
## Otu0156_Flavisolibacter_Flavisolibacter 0.0197 *
## Otu0202_Polyangiaceae_Polyangiaceae 0.0150 *
## Otu0274_Gemmatirosa_Gemmatirosa 0.0114 *
## Otu0300_Novosphingobium_Novosphingobium 0.0112 *
## Otu0316_C0119_ge_C0119 0.0104 *
## Otu0380_Roseomonas_Roseomonas 0.0090 **
## Otu0401_Sphingomonadaceae_Sphingomonadaceae 0.0089 **
## Otu0432_Roseomonas_Roseomonas 0.0153 *
## Otu0438_AKIW781_ge_AKIW781 0.0082 **
## Otu0456_Armatimonadales_ge_Armatimonadales 0.0115 *
## Otu0340_Acidobacteriaceae__Acidobacteriaceae_ 0.0321 *
## Otu0355_1174.901.12_1174.901.12 0.0143 *
## Otu0428_Sphingomonas_Sphingomonas 0.0191 *
## Otu0545_Chitinophagaceae_Chitinophagaceae 0.0169 *
## Otu0351_Rubrivirga_Rubrivirga 0.0252 *
## Otu0373_Chitinophagaceae_Chitinophagaceae 0.0285 *
## Otu0388_Beijerinckiaceae_Beijerinckiaceae 0.0334 *
## Otu0434_JG30.KF.CM45_ge_JG30.KF.CM45 0.0273 *
## Otu0442_Chthoniobacter_Chthoniobacter 0.0305 *
## Otu0516_Gemmataceae_Gemmataceae 0.0265 *
## Otu0552_Acetobacteraceae_Acetobacteraceae 0.0301 *
## Otu0559_Acetobacteraceae_Acetobacteraceae 0.0271 *
## Otu0584_Saccharimonadales_ge_Saccharimonadales 0.0285 *
## Otu0383_Spirosoma_Spirosoma 0.0458 *
## Otu0429_Spirosoma_Spirosoma 0.0484 *
## Otu0485_Caulobacter_Caulobacter 0.0437 *
## Otu0551_Acinetobacter_Acinetobacter 0.0421 *
## Otu0586_Rhizobiales_Rhizobiales 0.0486 *
##
## Group IN+WA #sps. 10
## A
## Otu0006_Massilia_Massilia 0.9442
## Otu0087_Pedobacter_Pedobacter 0.9661
## Otu0207_Beijerinckiaceae_Beijerinckiaceae 0.8889
## Otu0153_Pedobacter_Pedobacter 0.9879
## Otu0257_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium 0.9294
## Otu0394_FBP_ge_FBP 0.9211
## Otu0323_Hymenobacter_Hymenobacter 0.9733
## Otu0048_Pseudoxanthomonas_Pseudoxanthomonas 0.8855
## Otu0459_Pajaroellobacter_Pajaroellobacter 0.8750
## Otu0378_Duganella_Duganella 1.0000
## B
## Otu0006_Massilia_Massilia 1.0000
## Otu0087_Pedobacter_Pedobacter 0.6400
## Otu0207_Beijerinckiaceae_Beijerinckiaceae 0.6800
## Otu0153_Pedobacter_Pedobacter 0.6000
## Otu0257_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium 0.6000
## Otu0394_FBP_ge_FBP 0.5600
## Otu0323_Hymenobacter_Hymenobacter 0.5200
## Otu0048_Pseudoxanthomonas_Pseudoxanthomonas 0.5600
## Otu0459_Pajaroellobacter_Pajaroellobacter 0.5600
## Otu0378_Duganella_Duganella 0.3600
## stat
## Otu0006_Massilia_Massilia 0.972
## Otu0087_Pedobacter_Pedobacter 0.786
## Otu0207_Beijerinckiaceae_Beijerinckiaceae 0.777
## Otu0153_Pedobacter_Pedobacter 0.770
## Otu0257_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium 0.747
## Otu0394_FBP_ge_FBP 0.718
## Otu0323_Hymenobacter_Hymenobacter 0.711
## Otu0048_Pseudoxanthomonas_Pseudoxanthomonas 0.704
## Otu0459_Pajaroellobacter_Pajaroellobacter 0.700
## Otu0378_Duganella_Duganella 0.600
## p.value
## Otu0006_Massilia_Massilia 0.0006
## Otu0087_Pedobacter_Pedobacter 0.0019
## Otu0207_Beijerinckiaceae_Beijerinckiaceae 0.0044
## Otu0153_Pedobacter_Pedobacter 0.0013
## Otu0257_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium 0.0086
## Otu0394_FBP_ge_FBP 0.0069
## Otu0323_Hymenobacter_Hymenobacter 0.0100
## Otu0048_Pseudoxanthomonas_Pseudoxanthomonas 0.0414
## Otu0459_Pajaroellobacter_Pajaroellobacter 0.0370
## Otu0378_Duganella_Duganella 0.0329
##
## Otu0006_Massilia_Massilia ***
## Otu0087_Pedobacter_Pedobacter **
## Otu0207_Beijerinckiaceae_Beijerinckiaceae **
## Otu0153_Pedobacter_Pedobacter **
## Otu0257_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium **
## Otu0394_FBP_ge_FBP **
## Otu0323_Hymenobacter_Hymenobacter **
## Otu0048_Pseudoxanthomonas_Pseudoxanthomonas *
## Otu0459_Pajaroellobacter_Pajaroellobacter *
## Otu0378_Duganella_Duganella *
##
## Group TN+WA #sps. 9
## A B stat p.value
## Otu0005_Sphingobacteriaceae_Sphingobacteriaceae 0.9594 1.0000 0.980 1e-04 ***
## Otu0030_Hymenobacter_Hymenobacter 0.9477 1.0000 0.974 1e-04 ***
## Otu0044_Acetobacteraceae_Acetobacteraceae 0.9703 0.9200 0.945 1e-04 ***
## Otu0001_Enterobacteriaceae_Enterobacteriaceae 0.9482 0.9200 0.934 0.0033 **
## Otu0079_FBP_ge_FBP 0.8935 0.9600 0.926 0.0002 ***
## Otu0173_Ammoniphilus_Ammoniphilus 0.9194 0.7600 0.836 0.0108 *
## Otu0253_Roseomonas_Roseomonas 1.0000 0.6800 0.825 0.0002 ***
## Otu0290_Acetobacteraceae_Acetobacteraceae 0.9570 0.5200 0.705 0.0060 **
## Otu0228_Proteobacteria_Proteobacteria 0.9825 0.4000 0.627 0.0289 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tcd.status<-c("Negative","Negative","Negative","Positive","Positive","Positive","Positive","Positive","Positive","Positive")
set.seed(577)
indicspecies.bac.disease<-multipatt(ds.rareotutabtax.rename[31:40,], tcd.status,func="IndVal.g",control=how(nperm=10000))
summary(indicspecies.bac.disease,indvalcomp=TRUE)
##
## Multilevel pattern analysis
## ---------------------------
##
## Association function: IndVal.g
## Significance level (alpha): 0.05
##
## Total number of species: 1775
## Selected number of species: 18
## Number of species associated to 1 group: 18
##
## List of species associated to each combination:
##
## Group Negative #sps. 7
## A B stat p.value
## Otu0796_Hymenobacter_Hymenobacter 1.0000 1.0000 1.000 0.0081 **
## Otu0475_Hymenobacter_Hymenobacter 0.9681 1.0000 0.984 0.0081 **
## Otu0193_Spirosoma_Spirosoma 0.9211 1.0000 0.960 0.0237 *
## Otu0111_Modestobacter_Modestobacter 0.9172 1.0000 0.958 0.0332 *
## Otu0194_Pseudomonas_Pseudomonas 0.8750 1.0000 0.935 0.0235 *
## Otu0574_FBP_ge_FBP 0.8448 1.0000 0.919 0.0398 *
## Otu0139_Devosiaceae_Devosiaceae 0.8151 1.0000 0.903 0.0253 *
##
## Group Positive #sps. 11
## A
## Otu0009_Halotalea_Halotalea 1.0000
## Otu0067_Aeromicrobium_Aeromicrobium 1.0000
## Otu0087_Pedobacter_Pedobacter 1.0000
## Otu0309_Sphingomonas_Sphingomonas 1.0000
## Otu0057_Azotobacter_Azotobacter 0.9798
## Otu0107_Dyadobacter_Dyadobacter 0.9677
## Otu0011_Microbacteriaceae_Microbacteriaceae 0.9424
## Otu0016_Micrococcales_Micrococcales 1.0000
## Otu0007_Xanthomonadaceae_Xanthomonadaceae 0.9948
## Otu0027_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium 0.8520
## Otu0055_Pedobacter_Pedobacter 0.9435
## B
## Otu0009_Halotalea_Halotalea 1.0000
## Otu0067_Aeromicrobium_Aeromicrobium 1.0000
## Otu0087_Pedobacter_Pedobacter 1.0000
## Otu0309_Sphingomonas_Sphingomonas 1.0000
## Otu0057_Azotobacter_Azotobacter 1.0000
## Otu0107_Dyadobacter_Dyadobacter 1.0000
## Otu0011_Microbacteriaceae_Microbacteriaceae 1.0000
## Otu0016_Micrococcales_Micrococcales 0.8571
## Otu0007_Xanthomonadaceae_Xanthomonadaceae 0.8571
## Otu0027_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium 1.0000
## Otu0055_Pedobacter_Pedobacter 0.8571
## stat
## Otu0009_Halotalea_Halotalea 1.000
## Otu0067_Aeromicrobium_Aeromicrobium 1.000
## Otu0087_Pedobacter_Pedobacter 1.000
## Otu0309_Sphingomonas_Sphingomonas 1.000
## Otu0057_Azotobacter_Azotobacter 0.990
## Otu0107_Dyadobacter_Dyadobacter 0.984
## Otu0011_Microbacteriaceae_Microbacteriaceae 0.971
## Otu0016_Micrococcales_Micrococcales 0.926
## Otu0007_Xanthomonadaceae_Xanthomonadaceae 0.923
## Otu0027_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium 0.923
## Otu0055_Pedobacter_Pedobacter 0.899
## p.value
## Otu0009_Halotalea_Halotalea 0.0081
## Otu0067_Aeromicrobium_Aeromicrobium 0.0081
## Otu0087_Pedobacter_Pedobacter 0.0081
## Otu0309_Sphingomonas_Sphingomonas 0.0081
## Otu0057_Azotobacter_Azotobacter 0.0081
## Otu0107_Dyadobacter_Dyadobacter 0.0081
## Otu0011_Microbacteriaceae_Microbacteriaceae 0.0081
## Otu0016_Micrococcales_Micrococcales 0.0442
## Otu0007_Xanthomonadaceae_Xanthomonadaceae 0.0371
## Otu0027_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium 0.0330
## Otu0055_Pedobacter_Pedobacter 0.0405
##
## Otu0009_Halotalea_Halotalea **
## Otu0067_Aeromicrobium_Aeromicrobium **
## Otu0087_Pedobacter_Pedobacter **
## Otu0309_Sphingomonas_Sphingomonas **
## Otu0057_Azotobacter_Azotobacter **
## Otu0107_Dyadobacter_Dyadobacter **
## Otu0011_Microbacteriaceae_Microbacteriaceae **
## Otu0016_Micrococcales_Micrococcales *
## Otu0007_Xanthomonadaceae_Xanthomonadaceae *
## Otu0027_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium_Allorhizobium.Neorhizobium.Pararhizobium.Rhizobium *
## Otu0055_Pedobacter_Pedobacter *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ds.indicators<-read.table("IndicatorAnalysis/bark16s_indicatoranalysis_sp20_ajo.csv",header=TRUE,sep=",")
library(tidyr)
ds.indicators.long<-as.data.frame(pivot_longer(ds.indicators, cols=c("Specificity","Sensitivity","Indicator.Value"),"Statistic"))
ds.indicators.long$OTU<-sub("\\."," ",ds.indicators.long$OTU)
in.ds.indicators<-subset(ds.indicators.long,ds.indicators.long[,3]=="IN")
tn.ds.indicators<-subset(ds.indicators.long,ds.indicators.long[,3]=="TN")
tn.in.ds.indicators<-subset(ds.indicators.long,ds.indicators.long[,3]=="IN-TN")
wa.ds.indicators<-subset(ds.indicators.long,ds.indicators.long[,3]=="WA")
tcd.positive.ds.indicators<-subset(ds.indicators.long,ds.indicators.long[,3]=="Positive")
tcd.negative.ds.indicators<-subset(ds.indicators.long,ds.indicators.long[,3]=="Negative")
ds.indicator.mat<-ds.indicators[c(1:10,21:30,41:50,61:70,81:98),2:4]
rownames(ds.indicator.mat)<-ds.indicators$OTU[c(1:10,21:30,41:50,61:70,81:98)]
colnames(ds.indicator.mat)<-colnames(ds.indicators)[2:4]
ds.indicator.row.dat<-data.frame(State=ds.indicators$Group)
rownames(ds.indicator.row.dat)<-make.names(ds.indicators$OTU)
annotation_colors<-list(
State=c(IN="springgreen3", IN.TN="slateblue2", TN="skyblue1", WA="violet",Negative="olivedrab1", Positive="darkslategrey")
)
my_colors<-colorRampPalette(colors=c("darkblue","lightblue"))
library(ClassDiscovery)
## Loading required package: cluster
## Loading required package: oompaBase